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SUMMARY

Software portability is one of the key methods of combating ,the

software crisis brought on by plummetting hardware costs and prolifera-

tion of new computer designs. Use of High Order Languages (HOL's)

assist this effort, as long as the corresponding compilers can be easily

generated to match a given HOL to any new machine architecture. The

Retargetable Compiler is such a compiler, in which an HOL program may

be reduced to high quality code for a given machine. The compiler should

be automatically produced from a formal description of the machine.

In this report we will review the current level of technology cover-

ing compiler theory, and especially compiler-compiler theory. We will

establish bounds on the kinds of languages and machines we intend to be

able to handle with our design, and finally we will present a design

for a retargetable compiler system based on our research performed un-

der this contract.

For
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EVALUATION

The objective of this effort was to develop design recommendations

for a tool to automatically build the code generator portion of a com-

piler (automatically retarget) from a formal description of the target

machine. Such a tool would enable the use of manpower efficient high

order computer programming languages on more Air Force software system

developments. Since software development and maintenance is labor

intensive, this effort is obviously responsive to RADC TPO-R5A, "Soft-

ware Cost Reduction".

This effort met the objective with a thoroughly analyzed set

of recommendations for such a tool. The present plan is to develop a

"retargetable" compiler for the new common DOD programming language

known as Ada. It is hoped that the retargetable compiler for Ada can

commence development in FY82.

SAMUEL A. DI NITTO, JR
Project Engineer
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1. INTRODUCTION

In this section, we discuss the current level of compiler tech-

nology, including its strengths and weaknesses, as well as our goals

under the Retargetable Compiler project.

1.1 The Current State of Compiler Technology

Since the introduction of high order languages, both the theory

and practice of language compilation have been advanced. One of the

more significant factors in this advancement is the use of meta-lan-

guages to describe the syntax of the target language. Two beneficial

effects have resulted. First, the front-end parts of compilers, which

decompose the lexical/syntactic structure of the source language, have

been generalized to the point that they can operate directly from the

formal specification of the source language. Thus, source decomposi-

tion is no longer considered a major hurdle in compiler development.

The second benefit of the use of meta-languages is simplification of

programming language through a tendency to use fewer and more system-

atic syntactic structures. While this has only a quantitative effect

on compilers, it is a significant advancement in practical software

development.

Success with formalization of language syntax has led to the de-

sire for some formalizations of semantics and program flow. Making

use of these formalizations, the compilation process has been evolved

into a two step process, in which the source program is first trans-

lated into an intermediate language, and then into the target language.

The intermediate language is designed to express only the semantics

of the program, thereby isolating the syntax of the source language

from that of the target language. There is a large variety of global

and local optimizations which are most conveniently performed on the

intermediate language form of a program. These optimizations (which



should more properly be called "improvements") are transformations of

the program which do not alter the semantics of the program as speci-

fied by its source language form, and which reduce some compile time

measure of program cost. The cost function to be reduced is usually

program size, estimated program speed, or a combination. The optimiza-

tions most easily performed on the intermediate language program (before

code generation) are often called "machine independent optimizations".

They can be performed regardless of the target machine, although their

desirability may depend on certain aspects of the target machine.

There is a large body of theory on obtaining and using the data flow

information on which global optimization is based, and a less compre-

hensive though growing body of experience in using machine independent
optimizations.

1.2 Problem Areas in Compiler Technology

After a source program has undergone semantic analysis and ma-

chine independent optimization, it must be translated into the target

language. This translation is from an intermediate language, which

expresses the program being compiled. The most common approach is to

generate target code based upon the elements of the intermediate lan-

guage, with consideration given to the context of each such element.

This approach, termed the 'ad hoc" approach, is basically a heuristic

approach as opposed to one based strictly on a theory of code genera-

tion. There is more theory known concerning register allocation stra-

tegies, but up to this point the theory is applicable only for special

cases, such as single register machines or single code blocks without

loops. The practical algorithm for register allocation are again

heuristics. This lack of underlying theory is a major obstacle to

automatic generation of the register allocation and code generation

phases of a compiler.

Another area in which there is plenty of information and little

organization is target dependent optimization. This includes all

2



transformations applied to either intermediate or target forms which

can be shown to constitute "improvement" of the program only when

characteristics of the target are given. Most of these optimizations

are obvious, and of direct benefit in reducing target program size or

execution time, but they all seem to be unique in comparison with each

other. They do not form categories or patterns within a coherent

theory. Each is its own category, and each is either completely appli-

cable or completely in-applicable for each target machine. If a fully

generalized theory of code generation existed, it would have to be

sufficiently adaptive to the target architecture that it would pro-

bably eliminate the need for our present distinction between code gen-

eration, register allocation, and target dependent optimization.

1.3 Other Compiler Development Problems

In developing any software project, it is valuable to have not

only a clean set of objectives, but also a way of measuring progress

toward those objectives. A compiler may well be an extreme case in

this regard. Compilers possess many characteristics, and meeting an

objective relative to one characteristic often conflicts with others.

In the course of developing a compiler, these conflicts must be worked

out through compromise. Such compromises can be made rationally only

if the developer knows the degree to which he is trading one thing

for another. Hence, it is especially important to have techniques for

measuring progress toward objectives, and for analyzing the compromise

between them. For example, consider two typical objectives: to mini-

mize target program size(s), and to minimize target program execution

time(t). It is simple enough to choose between two optimization tech-

niques if the difference between those techniques affects only s or

only t, but this is rarely the case in light of potential subsequent

optimizations. We need an algorithm to trade between s and t. Perhaps

it is to minimize (s * t), (As + t), or (sI + tJ). The algorithm it-

self may not matter as much as the fact that it may change from one

segment of the program to another (e.g., local minimization of t has



more affect on global t if the locale is in a loop). If we define

optimization as a tendency toward less comsumption of a single resource

(or fixed proportion of several resources), then we (an optimize only

if we can determine the consumption of that single resource. In fact,

most optimization decisions can be made based on a simple resource

(s, or t) and within a limited context. But without a philosophy for

resource definition and comparative measure, we will not have a con-

sistent and justifiable approach to the more complex optimizations.

When measuring the quality of a compiler some attention might be

given to the cost of compilation. The compile-time resources that

should be spent for a given improvement in object program quality de-

pend on the intended use of the compiler. For the compiler writer to

determine the best optimization and code generation strategies to apply,

he will need to be able to make estimates of the cost/benefit ratios

of the alternate techniques.

1.4 The Retargetable Compiler Goals

Much of theory and Dractice of compilation and compiler generation

has been developed from the bottom up. That is, only specific problems

have been addressed, and these only in fairly narrow contexts. This

is not to discount the value of the work already done. We would like

to place this existing knowledge in a framework of needs and require-

ments that is derived from the top down. This would clarify the gaps

in our knowledge, and the consequent objective of closing those gaps.

Additionally, it would help us bring some sense and uniformity to this

fragmented field, and could lead to a philosophical foundation which

is necessarv for rapid progress.

The whole field of automatic compiler generation is not yet mature,

and is not likely to become so for some time. We can, however, make

use of what we do know provided that we are practical. Toward this

end, we intend to concentrate in areas of theory and technology which

4



appear to have the greater pay-offs in features that are desirable in

a compiler generator. Those areas which have minimal pay-off, or which

cannot be implemented without a great expense will be addressed only

in regard to possible future work. In this way, we will provide the

basis for a practical retargetable compiler generator which exhibits

good balance between retargeting effort and target program quality.

5
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2. SCOPE

In this section we will deal with those constrairfts which we feel

realistically limit the goals of the retargetable compiler, and there-

by define the goals of this work.

2.1 Languages of Interest

The programming languages for which retargetability would be use-

ful are legion, and more are developed every day. Our approach to op-

timization and code generation issues are best served by limiting the

languages to those which handle the data structures for which the

general purpose machines of today are designed: integer and real

arithmetic, and composites of these. Some other data types, which are

to some extent machine supported, are either not universal enough (e.g.,

decimal arithmetic) or not uniformly treated (e.g., byte strings)

across the range of computers of interest. The languages included are

those known as either "algebraic" languages, or "system programming"

languages, and include FORTRAN, BASIC, ALGOL, PASCAL, BLISS, and, in

particular JOVIAL and Ada. We exclude those languages which require

interpretation or extreme run-time library support, such as SNOBOL,

LISP-and APL. These languages are generally characterized by their

support of some specific data structure such as strings or lists.

The reasons for this emphasis on languages which are machine

data-structure supported are that they are the ones for which extensive

optimization strategies and clever code generation procedures will pro-

vide the best improvements in the finished object code. Those languages

which are heavily run-time supported (in order to handle data struc-

tures divorced from existing machine capabilities) are not so readily

optimal - most such work is performed in writing the run-time support

package for each machine.

6



Note, however, that it will probably be impossible to build any

compiler for any machine without some kind of run-time support avail-

able, particularly in the areas of input/output processing, storage

allocation, and other operating system interfaces.

2.2 Target Machines

The choice of target machine for the retargetable compiler must

likewise be limited. We must (at least for this report) discard the

special purpose machines such as array processors, and those specialized

for high level languages, such as pure stack machines. We will not be

considering machines which are designed to specifically implement paral-

lel processes, except insofar as they will perform as a single proces-

sor on the target code.

Note that these exclusions do not seriously limit the range of

general purpose processors in use today. We do plan to be able to

generate code for one address(Intel 8080), two address (PDP-l1), three

address (VAX) and general register architectures (S/370, 1108) as well

as combinations of these sets (MODCOMP). This will include most of

the micro-processors available today, as well as most minis and main-

frames, and even the classes of micro-code known as "vertical".

The primary reasons for the restrictions on the machine applica-

bility is the lack of unifying compiler theory across all the more

special purpose machines. The somewhat tenuous existing theory of

macnine-independent optimization, for example, does not at all address

the equivalent problem in truly parallel processes.

Finally, the retargetable compiler is envisi6ned to be just that -

a compiler not an interpreter. We will not discuss such techniques as

run-time monitoring (in the sense of Knuth's [Knu7JN use of the term)

and dynamic optimization, since these techniques are not yet practically

useable. They are indeed subjects for future research, and future de-

sign of the Retargetable Compiler should allow for the possibilities of

such techniques.
7



3. THE PROBLEM

3.1 Interpretation of the SOW

The Statement of Work [RFP] for the Retargetable Compiler con-

tract is broken into two parts:

- investigation of ways and means of automatic code genera-

tion, and

- "detailed recommendations for the design" of a retargetable

compiler.

The first section contains three primary areas of research:

- the CDL to drive the code generator must be specified/

developed;

- a complete set of optimizations, driven by the CDL descrip-

tion, must be specified; and

- well specified intermediate representation must be

developed.

The last section of the SOW specifies that the design must include

implementations for 373/1 and Ada.

We will present, in section 4.0 of this report, both our design

and the algorithms we feel fill the requirements of a multi-machine

environment. In this section, we will specifically address several of

the issues covered by our research into Retargetable Compiler methods,

and address the J73/I and Ada requirements in particular.

The SOW assumes that compiler front end technology is well enough

advanced that there is no need to go into that part of the retargetable

compiler. As far as the research portion of the SOW is concerned, this

is a correct assumption. However, we feel the need to discuss the

front end processing in the system design for four reasons:

8



The requirement that we specify the intermediate language (which

is input to code generation and output from the compiler front-

end) infers that the front-end must supply said language. Unless

we choose some already existing front-end and its intermediate

language or equivalent, then we must at least hypothesize a

front-end meeting this requirement.

Some optimizations of the machine-independent, flow analysis type

require data concerning the semantics of the language being

translated, the generation of which is not among the capabilities

of currently existing compiler-compilers. This will be considered

in more detail when discussing the intermediate language.

The final paragraph in the SOW requires the design to be appli-

cable to (at least) two different languages. This requirement is

most readily compiled with by designing a language definition

driven compiler-compiler front-end.

Finally, from a systems engineering point of view it is best to

design the entire system, both front-end and back-end, together,

in order to avoid interface problems and promote a uniform approach

to the entire retargetable compiler problem.

With these points in mind, we will treat the design of a complete com-

piler-generator rather than just a code-generator generator.

3.2 Research Topics

There are five primary areas of research connected with the retarget-

able compiler:

- computer description languages;

- intermediate languages;

- machine independent optimization;

- code generation techniques;

- machine dependent optimizations.

9



3.2.1 Comp2uter Description Languages

Current code generation techniques are oriented toward an instruction

set processor. Code generation is seen as a process of producing machine

language instructions which are interpreted by some target machine. This

interpretation cycle assumes the execution of one instruction at a time, with

the instructions being retrieved from an instruction memory, and with the

ability to make the sequence of execution dependent on data values. Addi-

tionally, current code generation techniques assume a main data memory and

can exploit such coimmon features as high-speed registers, condition codes,

and multi-action instructions. Instructions are assumed to be defined strictly

in terms of the values read from and written into memories. These memories

include main memory, registers, the program counter, and condition codes.

These characteristics of current code generation techniques point to

various traits in a CDL that would be helpful for generating code for a ma-

chine described in that CDL. First, since code generation techniques assume

an interpretation cycle, with the variability between machines being in the

individual instructions, the description language should focus on the behavior

of these individual instructions, providing tools for exact description ofI

their behavior. The instruction descriptions should be high level, simply

describing the mappings from the inputs to the outputs of the instructions.

The description language should require thle presence of exactly one program

memory and exactly one, clearly identified program counter. Also needed are

tools for the description of the various memories of the machine. To allow

the code generator to make optimization choices, the description must give

the costs in time and memory space of the instructions. In addition to these

content requirements for the description languages, it is also desirable that

the language be easy to use and of wide applicability so that machine descrip-

tions may be already available from other applications or easy to write if

no existing description exists for a machine of interest.

We have examined fourteen languages in use today which describe digital

hardware to some extent. (See Appendix A) These are:

10



ISP and derivatives (ISP ISPS) (Instruction Set Processor)

CDL and Purdue Extended CDL (Computer Description-Language)

DDL (Digital Design Language)

LALSD (A Language for Automated Logic

and System Design)

SMITE (Software Machine's Implementation

Tool using Emulation)

AHPL (A Hardware Programming Language)

APL (A Programming Language)

MOP (Machine aerations)

CASSANDRE

APDL (Algorithmic Processor Description

Language)

LOGAL (Logic Algorithm Language)

LCD (Language for Computer Design)

ERES (Erlanger Rechner-Entwurfs-Sprache-

Erlangen Computer Description Language)
ConLan (Consensus Language)

MOP, developed by Cattell at CMU, is an obvious candidate based on these

criteria. It was developed for code generation with the above criteria in

mind. It assumes an interpretation cycle, which is not made explicit in the

description, which executes instructions stored in a main memory. In fact,

no overall control structure or algorithm is given for the machine, with con-

trol being left to the assumed interpretation cycle. The main memory is also

used to store data. Each instruction is identified and described separately,

with the description giving the fields of the instruction, its operation code,

its costs, and its actions. The actions are described in terms of the input

and output of the instruction. Tools are provided for the exact and clear

description of available memories and how they are accessed by the various

instructions. Clarity of the description here includes the capacity for

automated analysis. Memories are described in terms of width, length, and

function. Also given are the instruction fields and field values needed

to use the various access modes for the various memories. At the same time,

MOP is easy to use, so machine descriptions may be easily prepared.

11



Wide applicability of a CDL is in conflict with the rest of the above

criteria, and as is almost inevitable, MOP is too specialized for wide appli-

cability. Particularly, its assumption of an interpretation cycle and high

level of description make it unsuitable for many applications. However, ISPS,

a very general and widely used language can be translated into MOP in an al-

most completely automatic manner [Oak793. ISPS is a derivative of ISP and

is an easy to use language that can be used at many levels of detail and pro-

vides very powerful modularization constructs which are useful for both

writing and analyzing descriptions. The data types, accessing mechanisms,

and operators provided by ISPS closely correspond to those existing in cur-

rent computers. These close correspondences make descriptions easy to write

and facilitate the writing of accurate descriptions. The simple control

constructs in ISPS are easy to analyze and closely correspond to those avail-

able in computer hardware. ISPS has some powerful extension mechanisms that

have made it suitable for describing a large number of computers for a wide

range of applications, including a great deal of work at CMU.

It should be noted that the work necessary to produce MOP from ISPS

(symbolic execution, I/O assertion development, etc.) does not duplicate

much of the work in using MOP for code generation, and thus the use of MOP

as the immediate input to code generation does not introduce extra work,

even when the only available description of a computer is in ISPS. Also,

* if no ISPS or MOP description of a machine is available, a MOP description

may be written by hand comparatively quickly and easily.

3.2.2 Intermediate Languages

The Intermediate language is the language used to represent user's pro-

gram between passes of the compiler. In particular, it is the form between

the syntactical/semantic encoding and the code generation phases, and there-

fore at the state where most (not all!) of the language dependent features

are absent, and before any machine dependencies have occurred [CAT78,HW781.

12



Intermediate languages (IL) originally were designed to effectively

carry information between passes of a compiler with little thought given to

making them general. It was soon realized that if a suitable IL could be

developed, then interchangeable front ends and back ends would reduce the

work of producing compilers for n machines and m languages from producing

m x n compilers to m plus n compilers, a significant reduction in effort

[Col74].

With this in mind, ILs were designed for their own sake, and the ideas

of language/machine independence were first explored. The first such IL was

developed by Mock and Steel [MOS58] and called UNCOL. Later efforts along

the same line include Coleman and Wait's JANUS [Col74, WH78] and Cattell's

TCOL family of ILs [Cat78, SLN79].

Several ILs are rather language dependent, but have come to prominence

because of unique features or special implementation solutions. These in-

clude HALMAT (for HAL compilers) E11741, the JOCIT IL (for JOVIAL/J3) [Dun75]

and OCODE (for BCPL) JRic7l]. An extended consideration of each above named

IL (except UNCOL) is given in Appendix B.

Because of their language independence, JANUS and TCOL are the only

ILs from Appendix B that will be considered as the IL for the Retargetable

Compiler.

JANUS was designed as a universal IL. It provides a large set of opera-

tors and a flexible storage scheme. Its control and data structures are at

a fairly low level, and it uses a stack for intermediate results. It is a

linear language that does not depend on a symbol table and was designed to

be translated by a macro processor.

TCOL was designed by Cattell as a universal IL for use with the MMM

algorithm. TCOL is a class of languages, and TCOLAda is a particular member

developed at Carnegie-Mellon University. TCOL programs are trees, with

fairly high level data and control constructs.

13
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The machine independence and extendability of the two languages are

practically equivalent. Although the language independence of TCOL is
Ada as

less than that of JANUS, as mentioned in the appendix this will not be a

practical obstacle, since the compiler-compiler will reduce the effort

needed to adapt to changes in the IL. The considerations left are the level,

temporary storage and suitability for code generation of the two languages.

The first two qualities are important because they affect the suitability

of the languages for code generation.

JANUS is a language that is very language independent, fairly low-level

and with fairly simple data types. These qualities, and its stack mechanisms

were motivated by the design goal that it be suitable for translation to

machine code by a macro translator. TCOL on the other hand, has high level

control constructs, with high level data types and no explicit stack. This

structure is motivated by the desire to make the IL program easily manipulat-

able by optimizers, code generators, etc. but it makes the translation to

machine code more difficult.

Both JANUS and TCOL are suitable for the optimizations and code gen-

eration techniques described in this report. TCOL's higher level makes opti-

mizations easier, however, and its tree structure is conceptually well

suited to tree-matching code generation techniques. TCOLAda is therefore

our choice for the Retargetable Compiler IL.

3.2.3 Machine Independent Optimizations

The theory of machine independent optimizations, as stated before,

has been fairly well explored and a good basis for use has been advanced

to practicality, notably with the BLISS11 compiler IWJW751.

Conceptually these optimizations can be reduced to three classes of

operations: code movement, constant folding, and dead code elimination.

The first can be subdivided into the several situations in which moving code

(and subsequent consolidation) may provide greater efficiencies. We will

mention each in turn below.
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Constant folding - this optimization results from the appearance of

expressions involving only constants in the program tree. These expressions

could have resulted from a programmer's explicit expression (PI=3.14159;PI2=

2.*PI) or implicitly, such as in subscript evaluation (REAL A(5,2); ...

B=A(2,1)). The ability to do constant folding can happen at any time from

first tree build through all the other code movement optimizations, as re-

construction juxtaposes constants that were previously separated.

Dead code elimination - some of the optimizations discussed below,

particularly variable and constant propagation, sometimes result in code

which will not be executed under any circumstances. This dead code can be

detected and eliminated.

Both constant folding and dead code elimination always should be effec-

ted as soon as the proper conditions are detected, inasmuch as they always

result in a smaller, more efficient program tree. The remaining methods,

classed as code movements, do not always increase the efficiency for all

desirable measures of efficiency. Therefore, code movements should only be

performed after the cases can be measured and compared in a meaningful way.

Redundant expression elimination - this is the case of a value being

calculated more than once in a code block. Generally, the result of the

first calculation may be saved and used in place of the second calculation.

This kind of optimization appears most frequently as the result of subscript

computations.

Hoisting code motion - when a .1lue is identically computed in each

branch from a flow path, that computation may be hoisted into the common

path and eliminated in the branches. The same idea allows common statements

made in branches to be dropped below the point where thev flow together.

Rho motion [LCH791 -This optimization attempts to assure that a compu-

tation is performed only once in a given flow instance. For example:
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Code ! f(a+b) Code 1 t=a+b
Code 2 t=a+b f(t)

Code 2

Code 3 Code 3
g(a+b) g(t)

Figure 3.2 Rho Motion Optimization

This motion may not seem useful unless the common path is part of a loop.

In the trivial case, this is known as moving invariant code out of loops.

Strength reduction - This optimization attempts to eliminate expensive

operations through use of less expensive ones. This is particularly useful

for indexing inside loops where an implicit multiplication of a subscript

can be avoided through saving and later adding to the previously calculated

displacement if the subscript is being increased by a constant each time

around the loop.

3.2.4 Code Generation Techniques

The direct final translation into machine or assembly language for the

target machine is code generation. There are several fairly well defined

ways of producing this effect:

- ad hoc code generation

- macroprocessing

- code generator languages

- machine description - driven techniques

Most of the code generators behind today's compilers are written using

ad hoc techniques, which means that code to handle each construct of its

input i, hand written as a special case on any particular machine. This is

the brute force method, applied in the absence of any coherent theory
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covering code generation. In order to convert the code generator for any

other machine, a complete rewrite is required, with almost all of the orig-

inal effort being unuseable. The efficiency of the code produced is in

direct proportion to the effort expended, as Wulf has demonstrated with the

BLISS 11 compiler.

Macroprocessing is a generalization of the text processing mechanisms

found in many assemblers in which user generated "macros" direct the trans-

lation of text [CHM78]. They have been used extensively to provide exten-

sions onto many high order languages, and may likewise translate some flat-

tened intermediate structure into assembly source text. The power in the

method is in direct proportion to the power of the macroprocessor used.

Some processors are quite simple and easy to use; the cost is loss of flexi-

bility. The more powerful processors allow flexibility rivalling assembly

languages themselves, at the cost of difficulty in preparing the macros. In

the extreme, writing the macros becomes equivalent to writing the code

generator itself.

The macroprocessor approach fails because the tool itself is too gen-

eral - it cannot take advantage of the reduced functional requirements that

the restricted goal, code generation affords. This weakness in approach

is covered by the code generator languages FDNF79 . They are, in effect,

special purpose languages designed for building code generators, and thus

provide the code generation flavor missing from the macroprocessors. Code

generators become much easier to write than in the ad hoc method, but each

one still must be written separately. Again, the quality of the code gen-

erated reflects the skill and effort expended in writing the code generator.

The final method of code generation, using a machine description, breaks

from the previous techniques in that the machine dependent parts of the code

generator are reduced to tables, and are generated automatically, based on a

machine description [Cat78i, LFra77 1, FGla73. It is true that the descrip-

tion must be supplied for each machine, but that seems to be a lesser effort
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than hand writing the code generator, and besides, the same description may

be used in several other ways in the compiler and related projects, such

as hardware design verification, diagnostics generation, etc., and thus the

effort is "amortized" across a series of uses. Moreover, the machine de-

scriptions for a number of machines already exist and could conceivably be.

used as is.

With all these considerations in mind, it seems that the machine de-

scription-driven methods of code generation are most appropriate for the

Retargetable Compiler.

3.2.5 Machine Dependent Optimizations

This class of optimizations is not appropriately named, since several

of the optimizations discussed here are largely machine independent.

The single common characteristic of these optimization techniques is

that they can best be performed only after code generation is finished. Some

need to know actual code sizing; some are code to code replacements (or

straight eliminations) for particular code sequences.

The utter lack of theoretical basis for tying Lhese optimizations to-

gether requires that they be treated as totally separate items. All are

machine dependent in the sense that they need to know, for instance, what

a branch instruction looks like, but some need no more than that, whereas

some need much more data concerning the target machine.

Many such operations are available in the literature. Some of the bet-

ter known and more general ones are:

cross jumping - elimination of code on two merging paths which is

identical.

unreachable code - detection and elimination of code between an uncondi-

tional branch and the next label.
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Branch chain elimination - if a branch instruction addresses an uncon-

ditional branch, make it a direct branch to the second target.

Redundant code elimination - elimination of instructions that are effec-

tive NOPs to the target machine.

Reversing branch sense - if a conditional branch is followed by an un-

conditional branch, and then the target of the first, the sense of the con-

dition may be changed to eliminate the second branch.

Superfluous compare - delete compare instructions when previous opera-

tions have already set the condition codes.

Special case literal operands - delete instructions such as OR with

literal 0, etc.

Auto increment modes - some machines can automatically increment or

decrement pointers. Use of these can eliminate explicit incrementation.

Reduction to simpler form - some instructions can be reduced in size

o an equivalent form, such as:

ADD #4,SP : CMP (SP)+,(SP)+ I
on the PDP 11.

Short form length-dependent instructions - some machines have short

form instructions for use when the target operand is some small relative

distance from the instruction. The algorithm to reduce these is non-trivial

and requires a fair amount of analysis FSzy78].

These optimizations are only examples. No doubt new architectures will

open new opportunities for novel methods of peephole optimization.
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3.3 The J73/I and Ada Requirement

JOVIAL and Ada are both outgrowths of the ALGOL language. JOVIAL in-

itially added byte and bit level constructs in order to expand ALGOL into

a systems programming language, while Ada has been developed from PASCAL in

order to provide PASCAL's data abstraction and modern program structuring

to a language suited for use in embedded computers.

Both languages fall within the language bounds listed in the scope

section of this report. Both are block oriented, procedural, algebraic lan-

guages, and both are syntacticly describable by LALR(l) grammars. They

therefore will both be amenable to analysis by our automatically generated

syntax analysis (see the next section). They will thus generate language

independent intermediate code, suitable for code generator input.
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4. A SOLUTION DESIGN

Using the studies made in the last section and our own study of the

state of the art, we shall propose in this section a conceptual design for

a retargetable compiler.

We will describe in general terms both the compiler generator and the

compiler architecture itself. This is followed by more detailed discussions

of each module in the back-end of the compiler, which is the area of pri-

mary interest to this report.

Finally, we have attached a more detailed description of our primary

descriptive input, the MOP. We have included this so that the reader may

more readily see the kind of description it is, and the data it contains.

4.1 Compiler Generator Architecture

Input to the generator will be in two sections, a machine description

and a language description. The code for most phases of the generated com-

pilation system will be invariant, with language and machine dependences

described in data supplied by the generator. Lexical analysis may require

a description of the language's lexical structure. Syntax analysis will

require a parse table which includes descriptions of connection point calls.

Semantics routines may require various information about the language, com-

pilation machine and target machine.

Flow analysis will require information about compilation machine data

types for use in constant folding. It will also require a description of

possible transformations. Code generation will need descriptions of the

target instructions to implement each IL construct and a description of the

data types and access modes of the target machines. Memory allocation will

require a description of the physical data types and access modes of the

target machine.
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To produce this information from its input, the generator will need to

do several kinds of processing. It must use standard parser generation

techniques to produce the needed parse tables. A simpler extraction may be

appropriate to give lexical analysis the information it needs. Cattell

has described techniques for extracting the tables code generation needs.

Simpler analysis and extraction are needed to get the information flow an-

alysis and memory allocation need from the machine description.

This leads to identifiable functions for the generator which can be

isolated in modules. A description of the lexical structure may need to be

extracted from the language description. Parse tables must also be genera-

ted for syntax analysis from the language description. Descriptions of the

target and compilation machine types may be needed by the two code genera-

tion modules, ORD and CG will need possibly distinct semantics and flow

analyses descriptions of the target realizations of TCOL constructs along

with their costs.

A description of the storage bases, data types, and access modes must

be extracted from the machine description for memory allocation.

4.2 Compiler Architecture

For reliability and simplicity, it is desirable that as much as possi-

ble of the retarget compiler be invariant, written once for all language-

machine pairs. A great deal of research has gone into identifying the lan-

guage- and machine-dependent aspects of syntactic analysis, flow analysis,

code generation and resource allocation. The retargetable compiler system

will exploit this work by isolating the machine and language dependencies

of the above processing in data tables, rather than attempting to synthesize

appropriate code.

The structure of the retargeted compiler will be somewhat similar to

that of the BLISSIA compiler described in 'WJW751. It is pictured in

Figure 4.1.
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Lexical analysis, syntactic analysis, semantic analysis and production

of the IL form of the program will be handled in a single conceptual pass.

These functions are handled by the phases LEX, SYN, SEN and TRL respectively.

Flow analysis, evaluation order determination, storage allocation, code

generation and "peephole" optimization will each he handled by a single

phase in a pass by itself, named FLO, ORD, TNB, CG and FOP, respectively.

To make LEX invariant over all languages would seem overly ambitious,

because of efficiency, the difficulty of formally describing a lexical syn-

tax and the dependence of lexical interpretation on context. Fortran and

PLII can be particularly tricky in their lexical structure. In addition,

LEX will need to build the tokens which are used by the SEN routines, which

are supplied by the implementor, so for LEX.to be invariant, it must build

tokens that supply all the information that any SEN routines might need.

This seems hopeless and unproductive. However, for a class of languages

with regular lexical structure these arguments no longer apply and the ad-

vantages of using proven routines and a formal description system become

more compelling. A middle ground is to have invariant scanners to collect

strings of digits, and letters and skip comments and blanks. The implementor

can then write a screener that uses these primitives to ease his coding task.

Also, one can supply a variety of packages appropriate to specific languages

or classes of languages. The choice of lexical analysis strategies is thus

dependent on the class of languages one wishes to address and other design

goals. Only in one way will LEX differ from traditional lexical analyzers:

LEX will not resolve constants which occur in the program. Instead, they

will be stored in a string table just as they occur in the program and will

be converted as required (in FLO and CF for the compiler computer, in CC

for the target).

SYN will be based on syntax-directed parsing techniques. An LALR(1)

or LL(1) parser generator embedded in the generator can generate the needed

parse tables. SYN can exploit automatic error recovery techniques though

it is probably best to avoid techniques that modify the syntactic stack,

since this will avoid inconsistent calls on the semantic routines simplify-

ing the implementor '5 task in writing these routines. Since SYN will only
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be written once, it is preferred that it be implemented in a way that eases

the writing of more variable parts of the compiler, even if SYN's complexity

is thereby increased.

SEM will be a collection of routines supplied by the implementor to

do the semantic analysis of the source program. The routines are envoked

by SYN as directed by the parse tables, and will determine possessions,

check compatibilities, perform operator identification and attribute coordi-

nation, and call upon TRL routines to build the IL program tree. SEM will

encode in the tree source and target data types and accessing information

for the operands in the tree. To support optimization, SEM will also need

to encode the logical orderings required by the source language, as speci-

fied in the discussion of FLO. Attribute grammars have been proposed as a

way of formally describing the semantics of a language and directing the

semantic analysis of a program, but this technology does not yet seem well

enough understood or efficient enough for use in a practical compiler.

The TRL routines will be invariant and will include generalized symbol

table and IL construction routines. The symbol table routines will need to

support the processing needs for languages with controlled scope (e.g., Ada,

Euclid), explicit aliasing (Fortran), user defined modes, and other features

of existing languages. The IL construction will need to support the speci-

fication of required orderings, source data types and target data types men-

tioned above. The implementor's coding burden will be greatly eased by
these routines and they will protect the integrity of the symbol table and-

IL.

For some languages, such as Pascal and Fortran , LEX, SYN, SEM, and

TRS could operate in parallel as part of the same pass, with analysis of

the program and production of IL proceeding together. For other languages,

such as Ada, multiple analysis passes may be required and production of IL

must be postponed to the final analysis pass. These passes will be imple-

mented by SEM, leaving SYN and TRL unchanged.
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FLO will perform global analysis, doing live/dead analysis on variables,

constant propogation and folding, identifying dead code, dead variables,

common subexpressions, and finding opportunities for code motion and strength

reduction. It will make use of ordering information in the IL. FLO will

use the same IL format as input and output, with its functions only being

IL transformations, leaving FLO invariant from compiler to compiler.

ORD will make decisions about potential optimizations identified by

FLO, determine evaluation order and identify temporary names (temporary

results), specifying their lifetimes, preferred target data type, storage

base and access mode.

Cattell has described a method discussed below and in rCat78lcalled

MMM, and a data structure, the LOP, useful for approaching this problem.

ORD will output a modified IL tree and a description of required temporary

names. TNB will assign target memories to the various temporary names de-

scribed by ORD. Where possible, TNB will assign multiple temporary names

to a single memory.

CC will use the memory assignments calculated by TNB to implement the

IL program produced by ORD. Again, the MMM and LOP described by Cattell

will be useful. In addition, a temporary storage manager will be required

by CG where assignments by TNB make the evaluation order specified by ORD

impossible. The temporary manager would save the values in currently allo-

cated but required memories and then restore the old values later, much in

the manner of conventional register allocators.

FOP will perform "peephole" optimizations using as its target machine

code input and output, correcting inefficiencies in CG's output due to code

from widely separated parts of the IL tree becoming adjacent in the produced

machine code. These optimizations include elimination of redundant machine

operations such as loops, loads and stores, and branches to branches. These

transformations are really hard to systemize and will be supplied by the

implementor.
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4.3 Compiler Module AlSorithms

In the remainder of this section we will concentrate on the algorithms

and peculiarities of the "backend" routines, namely CF, FLO, ORD, TNB, CC,

and FOP. These routines are of the primary interest to retargetable com-

piler study, since, as noted in the SOW and the introduction front-end

theory and practice are well established.

Module Generator:

jDilut Processor Output

syntax grammar of LALR(l) compiler-compiler LALR(1) syntax

language (e.g., YACC) tables

Compiler Module:

source program - LALR(1) parser with - TCOL program tree

tables

- user supplied lexical - symbol table

analyzer (including

- user supplied semantics string and

routines constant tables)

- TRL tree and table mani-

pulation routines

Figure 4.2 LEX/SYN/SEM/TRL HIPO Chart
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Module Generator

(no preprocessing for FLO)

Compiler Module:

Input Processor Output

- TCOL program tree - user supplied "safety" TCOL program tree

- Symbol table decision routines with constants

- FLO processor folded, unused

- CF subroutine code eliminated,

common subexpres-

sions threaded,

and code motions

identified

Figure 4.3 FLO HIPO Chart

4.3.1 FL) - Flow analysis

The FLO module performs data flow analysis on the program tree, performs

constant propagation and detects other possible FLO and classical optimiza-

tions. The difference between FLO and classical optimizers is that FLO de-

tects possible global optimizations, but the desirability of performing a

given transformation is determined later, by ORD. This is the technique

used by Wulf et al. in the BLISSlI compiler.

A global optimizer needs to determine the lifetime of each variable or

computation (data flow analysis), and to determine feasible optimizations,

which art- motions )r (-liminations of computations in the program. Most of

the work performed bv the optimizer is language independent. Language de-

pndencis arise in two ways: limitations on the lifetime of a variable

And 1 imit at ion, on when code, motion is legal given the semantics ot the

-4;i,,r i lang uagc. i"( move or e l iminatc comptitat iols, the opt imizer must

detcrmin tht, ir I ilttim s , ;inkf wht her o r not re I at 1 s1 i ps between Oh ,ec t s
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can be changed in a given situation. As an example of the effect of lan-

guage semantics on lifetimes, a function call in Fortran may alter anv

variable in COMMON. As an example of the effect of semantics on possible

optimization is that in Fortran association and commutation may always be

applied to multiplication; in Algol this is not true. These effects have

to be taken into account in the optimizer for a given language, and in FLO

user-provided procedures will do this. There are a number of formulations

of global analysis in the literature, some quite recent. The one that will

be used in this discussion is the one developed by Geschke Ges72I in his

thesis and used in the BLISS11 compiler. Its advantage is that it makes

the isolation of language dependent information simple.

According to Geschke, the language dependencies of FLO can be described

by three relations called "initial order", "necessary constituent", and

"essential predecessor". These encode the information described above, and

are used to derive sets of data flow information which are used to deter-

mine feasible code motions and code eliminations. Procedures to determine

these relationships will be supplied by the compiler writer.

FLO will input a program tree, and proceed down the tree, detecting

common subexpressions and determining the data flow sets mentioned above,

which are then u;ed to determine possible optimizations. Outputs of the

phase are the program tree with constant folding and dead code elimination

performed and lists of common subexpressions and feasible optimizations.

These optimizatiens are those mentioned in the section on optimization

techniques (3.2.3).

4.3.2 CF - ConstanL Folding

The constant folding routine is unique in that it is repeatedly called

by FLO, ORD, and CC in order to perform constant competations which appear

in the program tree. CF is recalled in each of the routines to perform those

computations uncovered by adjustments made to the tree by other optimizations.
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Module Generator:

Input Processor Output

- data description - procedures for

portion of MOP bit string to/

description from char string

conversion

routines (for

compiler

machine)

Compiler Module:

- program tree - CF subroutine - program tree,

- symbol table - Conversion routines with constant

expressions

folded

- symbol table

suitably

updated

Figure 4.4 CF HIPO Chart

Module Generator:

Input Processor Output

- MOP description - as described in - condensed table

f'Cat781 (termed LOP)

I
Compiler Module:

- program tree from FLO - ORD routine - optimized program

- LOP - CF subroutine tree including

preferencing

attributes
Figure 4.5 ORD HIPO Chart
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4.3.3 ORD - Tree Orjring

The ORD module's purpose is primarily to perform a preliminary code

generation, in order to collect the data required to intelligently select

among the code movements found possible by the FLO module. ORD also pro-

duces and distributes a number of code-generation derived attributes around

the TCOL tree, for use by the following TNB and CC phases.

The preliminary code generation phase, called SEL, uses an algorithm

named by Cattell the "Maximal Munching Method ( LM)' algorithm . Cat78'. In

essence, this algoritbm artempts to generate assembly code for the largest

part of the code tree (from the top downward) at a time, and then recurse

upon the remaining unmatched branches. in:ismuch as register allocation

has not yet been done the match must make assumptions concerning allocation

of the data leaves and temporary locations generated which may prove to be

false; however, the need is for approximate time/space values for comparison

purposes, so the assumptions made will probably cancel out.

For each code movement possibil-itv indicated bv FL[O, a time/space com-

parison will be made, and if the code movement is an improvement, the move-

ment will be marked. The total time and space accumulations (as well as

other data, such as probable number of executions, etc.) wi1 be passed to

a user supplied tradeoff routine which returns some measure of quality, thus

giving the user control over the goals of the optimization. In[ a final

pass, the tree will be restructured by performing the indicated code move ents.

The second phase of ORD, called DEC, performs some kinds of machine-

dependent attribute determinations and tree decorating. These attributes

include self-complementing operations (i.e., x = -(-x)),use of special

register subsets (i.c., the M instruction on the S/370 places its result

in an even-odd register pair) and taking advantage of the machines offecti\ye

address capabilities to perform arithmetic.
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The decoration of the program tree with the "negated" attribute will

allow elimination of redundant negation operations within the tree (note

that "negation" is used herein generically to indicate any self comple-

menting operation). At any given node in the tree, each of the branches to

that node will report back the value of the negation attribute of that

branch. The DEC pass, upon arriving at that node in an end-order walk of

the tree, will use these values to compute the "best" value of the attributes

to be passed up the tree to higher nodes. This computation is generally

based on the concept of performing the minimum number of negations in order

to satisfy the node's operation.

The pass also has the ability to eliminate negation nodes, to change

addition to subtraction (and vice versa), and to reorder branch phasing

in order to minimize operations. An example of negative propagation might

input the tree:

H

(-)(- -

(+) (-)

Figure 4.6 ORD Example Input

where the parenthesized signs represent the values of the negation attributes

at the various nodes. After negation attribute propagation, the tree would

resemble:
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+ +
+ (+) 4-/\/

(+) (-) () (-)

Figure 4.7 ORD Example Output

A similar (and simultaneous) operation would decorate the tree with

attributes which indicate the desirability of having operands to particular

operations computed in certain registers. These particular operations may

include, for example, integer multiplication and division on some machines,

which require their inputs in a subset of the available registers. For ex-

ample, the following tree on a machine like the IBM S/370 might produce the

code indicated.

LD RO,I
AD RO,J ; RO=I+J

L MV R1,RO ; move to odd reg

NP RO,K
DV RO,L

I J

Figure 4.8 Register Preference Example

However, the MV instruction could have been eliminated if the ADD node

had known the result was required in an odd register.

Finally, the DEC routine will search for those nodes in the tree which

could be subsumed in the effective address computation of the machine's

hardware. For example, the tree:
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D

i *1 *
A B

Figure 4.9 Addressing Mode Example

could be performed in two instructions on many machines if it is recognized

that the result of the substract operation should be bound to an index re-

gister, and thus the add operation may be performed as part of the indexing

operation in the multiply operation. DEC will thus indicate in the attri-

butes of the referencing operator above the add operation the strong pre-

ference for its input to be in an index register.

The negation attribute discussed above will be of no further use once

ORD is complete; however, the register preferencing attributes are needed

by the register allocation phase (TNB) and will remain until then.

Upon completion of ORD then, the program tree will be in its final

"shape", reflecting the final layout of the program. Further phases of the

compiler will not change that basic shape, but rather change node values

and attributes.
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Module Generator:

(see Figure 4.5)

Compiler Module:

Input Processor Output

- program tree from ORD - TNB routine - program tree

- LOP with locations

and registers

assigned to

temps, variables,

and constants

Figure 4.10 - TNB HIPO Chart

4.3.6 TNB - Temporary Name Binding

[he TNB module has the function of binding all user variables, local,

global and temporary, to real computer resources in such a way as to insure

the integrity of the program semantics, and to provide the "best" use of

those resources. In reality, TNB must balance the requirements of fast ac-

cess and the usually limited number of high speed data locations.

Historically, register allocation has been one of the really tough com-

putational problems in compiler theory. There are no algorithms currently

known which will guarantee optimal allocation in all usual compilation cir-

cumstances, and many of the better algorithms can become extremelv time con-

suming when some worst cases are attempted. Obviously, what is needed for

now is an algorithm which makes a minimal sacrifice to optimalitv while be-

coming well behaved in a computational sense.

The register al locat ion scheme of Johnsson 'Joh75 seems to fill these

reqi irenents, and in addition, was formulated with requirements for machine

indepenidence.
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Johnssn's algorithm is divided into three phases, which we call GAT,

RNK, and PAK.

GAT is an information gathering phase; it passes over the tree,

assigning each address-valued node a temporary name (TN) represent-

ing the location where its value can be temporarily stored. in addition,

references to TNs and other variables are noted, including whether the value

is changed or simply used. When the pass is complete, a list of "lifetime

pairs" is computed for each TN (i.e., a pair of points in the program be-

tween which the TN is "alive", or in active use). Finally, preferences for

particular storage bases (such as those declared by the access mode deter-

mination part of ORD) are noted.

The RNK phase performs the primary analysis of the TNB module by build-

ing an interference and preference graph for the program being compiled.

The interference graph links those TNs which have overlapping lifetimes.

Thus, two nodes which are connected (over any path) in the interference

graph may not be assigned to the same physical location. The preference

graph links those TNs which should be assigned the same location in order

to avoid extra load and store instructions. These links may be weighted to

express, for instance, an increased preference for TNs within loops.

Finally, the PAK phase distributes the known machine resources to the

TNs by performing the "packing algorithm". There is not yet an optimal

packing algorithm known. Many different algorithms and heuristics are em-

ployed at this time, and further research is being done on the problem. A

good algorithm must meet four basic criteria (from Leverett e. al. rLCH791):

No two TNs which are connected by an interference arc may be packed

in (allocated to) the same storage loration.

- The cost measure determined by summing the relative costs of all

TNs, as derived from the usage information discussed in previous

section, and from the knowledge about which storage class each TN

has been packed in, should be kept low (perhaps minimized).
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- The profit measure determined by summing the values of all prefer-

ences arcs that connect two TNs packed ,to identical locations should

be kept high (perhaps maximized).

- For some storage classes, there may be a cost associated with using

any member of the storage class, which is fixed regardless of how

the member is used. For instance, a run-time convention for the

preservation of register contents across routine calls may require

that if a register is used by a routine, it must be saved at the be-

ginning of the routine and restored at the end. Thus there is a

cost measure determined by the number of locations (of certain

classes) which are used in a given packing; this should be kept low.'

In a final pass, PAK will distribute its packing decisions throughout

the tree, replacing variables and TNs with register numbers or other sto ige

base locations. The program tree has now been allocated in memory and final

code generation may take place.

Module Generator:

(see Figure 4.5)

Compiler Module:

Input Processor Output

- program tree from CG - CC routine - linked list of

- LOP instructions

Figure 4.11 CG HIPO Chart
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4.3.5 CG - Code Generation

The code generation phase performs the final pass on the program tree,

converting it to actual assembly language code. It attempts to build lo-

cally optimal sequences taking full advantage of the instruction set and

effective address calculations.

The primary algorithm used to perform this task is Cattell's MMM algo-

rithm, mentioned earlier in the discussion of the ORD module. This algo-

rithm attempts to pattern match the root of the program tree against an

ordered series of trees built by the retargetable compiler generator. This

list of trees is ordered in such a way that the least expensive special

case instruction sequences are searched first in order to satisfy the re-

quirements of a given tree pattern. For instance, if the tree root was an

add operator, the first code segment to try could be an increment instruc-

tion, then an add immediate, then an add register. Since address references

were recognized in the ORD phase and appropriate TNB assignments requested,

most such calculations should match effective address computations repre-

sented by the MOP's access modes. Finally, all unmatched subtrees are in

turn examined by MMM as it recurses on each of them.

As an alternative code sequences are found for each node in the tree,

within the framework of the tree and register assignments made previously

total time/space statistics are compiled and compared, insuring that the

optimal local code is selected. This code, when output in order by a final

end-order tree walk, may still be subject to certain code level optimiza-

tions, which will be the subject of FOP's gentle ministrations.

4.3.6 FOP - Final Optimization

After CG has determined which instructions are to be generated, FOP

will perform final optimizations and emit machine code. Many of these final

optimizations are so machine dependent that no formalism for FOP exists, and

parts of it will have to be coded by hand. Some of these optimizations
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Module Generator:

(none for FOP)

Compiler Module: )
Input Processor Output

- list from CG - FOP processor - optimized list

- user supplied routines of instructions

in assembly

code

Figure 4.12 FOP HIPO Chart

however, are nearly machine independent, and others fall into general classes,

so that a framework for FOP can be provided, which must then be tailored

by hand for a given machine. In general, the structure of FOP is similar

to the final pass of the BLISSIl compiler.

The first sub-phase of FOP performs optimizations which involve multiple

(and possibly widely separated) instructions. These include cross-jumping

store/load pairs, etc. Since, in some cases, these optimizations can make

other improvements possible, this phase will be repeated until no optimiza-

tions remain to be performed. The second sub-phase will examine each in-

struction once, trying to replace it with a cheaper but equivalent

instructions.

The third sub-phase of FOP generates the final compiler output. For

machines, such as the PDP-11, with "span-dependent instructions" such as

long vs. short form jumps, the proper alternate form will be selected here.

T. G. Szymanski's algorithm, which is efficient and optimal ISzy78 ] will be

used to minimize the length of these instructions.
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4.4 The MOP Computer Description

The MOP is a functional machine description in terms of input-output

assertions. That is, it maps inputs in the form of tree templates into

outputs which are all machine instructions (in assembly or machine code).

The description itself is in LISP list notation in which the tree templates

may be easily encoded. For instance the notation:

(; (a $1 (- $1 1)) (- %N (LSS (- $1 1) 0)) (+ %Z (EQL (- $1 1) 0)))

is a linearization of the tree:

- %N LSS %Z L

$1 1 A
$1 1 $1 1

Figure 4.13 LISP notation

The semicolon operator indicates a series of alternatives; in this case,

either of the three patterns, if matched, will output the same code. The

leftmost sub tree indicates the direct action of a decrement instruction (in

which the parameter "$i" must match a register), while the other two indi-

cate the settings of condition codes %N and %Z by the decrement action.

Note that each pair of subtrees represents the side effects of applications

of the third.

The MOP is a set of six tables which describe different aspects of the

machine:

41



Storage Bases (SB) - a list of memory components in the machine, their

sizes and uses;

Instruction fields (I-flds) - a list of fields used within instructions,

their sizes, displacements, and types;

Access Modes (AM) - a list of ways in which the various storage bases

may be accessed (e.g., direct, indexed, etc) in symbolic form;

Operand Classes (OC) - a list of sets of access modes, any one of

which may be applicable to a given instruction field, and the cost

and format data for the use of each;

Instruction Formats (I-Fmt) - a list of possible formats which an in-

struction may be written in;

Machine Operations (M-op) - the instruction 1/O assertions, including

cost and format data for the use of each.

There is also a quasi-machine independent table used with the MOP de-

scription, called the Axiom List. This is a table of transformation func-

tions which allow a machine with a less-than-comprehensive instruction set

to use alternatives. For example, the axiom list includes DeMorgan's laws,

definitions of AND and OR operations in terms of each other, etc.

A set of examples taken from a description of the PDP8 computer in

Cattell [Cat78] will be presented. The complete description and the Axiom

List is contained in Appendix C.

- An entry in the 1-Flds list:

(OP 0 3 0 0)

describes the field called "OP", which occurs at bit 0 word 0 of

the instruction, 3 bits long, of type "opcode".

- An entry in the SB list:

(Mp 256 12 M)

indicates the Mp (primary memory) is 256 12 bit words of type
itmemory".

Another example is the program counter:

(PC 1 8 P)
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An Access Mode:

%Mp: (- Mp $1:#8 0 12)

indicates that the AM "%Mp" is a direct fetch from Mp of 12 bits

from a constant 8 bit location supplied by the tree.

The Operand Class "Y" is defined by:

Y: (%8 :: (F2T 5 0 O $1 0)

%Mp :: (MIT 5 1 0 $1 1))

That is, wherever the OC "Y" occurs in a M-op, it can be matched

either by a tree leaf representing an eight bit constant (AM is %8)

or bv a direct memory access (AM is ZMp). Associated with each

is a format number (5) and space/time cost "0 0" and "1 0" respec-

tively - note that use of direct access rather than immediate

costs one extra word). The final two items for each are formatting

templates.

An example M-op:

(IF (LSS %Acc 0) (- /PC (+ 7PC )))

(EMIT SKPL 3 1 1 7 1 4)

This M-op could be called by matching it to the program subtree:

IF

LS S/ S\
%Aic 0 %PC /+

%PC 1

Figure 4.14 M-op Matching

If this were to happen, a SKPL instruction would be emitted, at a space

cost of 1 and time cost of 1, using I-Fmt number 3. The "7 1 4" are the

contents of 3 of the fields in the instruction, fixed by the selection of

this particular operation. Note that the SKPL is actually superfluous, the

op code is emitted directly into the I-FId. If input is to go into an

assembler, the alphabetic op may be required.
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Operator Meaning o Value Example

sequence * none (; S1 S2  S n) perform state-

ments S1 through Sn n sequence

dereference I value (. A) contents of location A

assignment 2 none ( A (. B)) is A = B (Fortran)

* binary 2 value (+ (. A) (. B)) is A + B

arithmetic

- unary I value (- (. A)) is -A

arithmetic

CALL procedure I + * none (CALL X A B) is CALL X (A, B)

FCALL function 1 + * value (same as CALL)
call

UPLOOP increment 4 none (UPLOOP I J K S) is FOR I
J TO K S; (Pascal)

DOWNLOOP decrement 4 none (DOWNLOOP I J K S) is FOR I
- J DOIINTO K S;

CASE case 2 +* none (CASE IS S2 .. S n ) is
construct CASE I OF (SEL )

SF1, case 2 none (SEL V S) is (CASE I S 1  .
alternative S) V S

n

* - 0 or more

Figure 4.15 Sample TCOLAda Operators
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5. CONCLUSIONS

The theory and practice of compiler development has come a long way

since the first FORTRAN compilers. The theory of lexica and syntatic an-

alysis have been advanced, and the production of those portions of the com-

piler have been automated. We believe that we may now also automate the

processes of machine independent optimization, register allocation, and

code generation. Another area, machine dependent optimization, may be at

least partially automated, but many of these optimizations are still too

machine-eccentricity dependent to allow a program to be able to predict

what to implement and how to go about it. (It is also hard for human com-

piler implementors, and very subject to experieLnce on a particular machine.)

Semantics analysis is the other compiler process which does not yet

appear amenable to strictly automatic analysis and generation. In this

case, however,,the theory is advancing and the ability to completely specify

language semantics, and therefore the ability to generate the appropriate

output from such a speci cation, seems to be a near future possibilir'.

We conclude that it is possible at this time to build a comprehensive

compiler generator which could, given a language specification and a machine

description, generate a compiler for the language on the machine. At this

time, it would De necessary to hand code the semantics analvsis and at

least part of the final optimization pass, as well as some parts (if a run-

time library. We foresee no intractable problems generating an Ada or

J73/I compiler using this generator.

There are many areas which still require study in this field. Besides

continuing work to automate the semantics analysis and final optimization

passes, the following are topics on which further research probably will

yield good results:
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The packing algorithm used in TNB is not optimal, but rather

heuristic. A lot of pure topological research is going on to

solve the "graph coloring" problem, of which this is an example.

Run-time monitoring lKnu731, in which the run-time system deter-

mines what parts of the program execute the most frequently, should

be examined, both as a feedback compiler-writer's aid, and to

drive.

Run-time optimizations, wherein the run-time statistics drive

optimization in an effort to increase the in-core efficiency of a

program which will be used repeatedly. One really exciting vari-

ation on this theme involves the optimization of micro-code sup-

porting the application to be optimized, following run-time

analysis of the application. The: microcode could be tailored for

a particular application in this manner.

The inclusion of specific machine features, such as paging, cache

memory, hardware stacks and queues, etc., whose impact on opti-

mization strategies is not vet well understood.

Procedure integration and identification, which attempts to

optimize across a specific space/time tradeoff by isolating redun-

dant code sections into procedures, and the converse of expanding

procedures in-line.

Machine independent post optimization in which a MOP or similar

description is used to drive a general optimizer. [Fra79] describes

a general optimization which does most of the work of FLO, this

and similar techniques should b examined.
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6. A DETAILED COMPiLATION EXAMPLE

We will, in this section, attempt to pursue a nontrivial example

through the various stages of processing within a retargeted compiler. The

example is written in PASCAL and is not meant to be a functionally meaning-

ful program (see Figure 6.1). After the front-end pass, it has been expanded

into an equivalent TCOL tree with accompanyiag symbolic information (see

Figure 6.2).

There are several things to notice in this front-end conversion. The

tree is of course built by the TRL routines under the direction of the user

supplied SEN phase. Note that the array accesses have been expanded, by

making assumptions covering both the language interpretation of arrays and

the machine. The symbol table has been consulted, in order to find the value

of the lowest array bound of each array.

The semantic routines could have as easily prepared a call to a gen-

eral array referencing subroutine, if the language (for example) allows

dynamic arrays.

The symbol table (Figure 6.3) initially contains variable types and

bounds (for arrays) and values for constants.

When FLO is called, several things happen. Constant folding is called,

flow analysis identifies constants and dead variables, and the tree is threa-

ded with common subexpressions. These changes are shown in Figures 6.4 and

6.5.

Figure 6.4 is unchanged from 6.2, except for the addition of common

subexpression chains. These chains will be used by ORD in eliminating re-

dundant computations. Figure 6.5 shows the possibilities for constant fold-

ing, constant propagation, code motion and strength reduction. The "+0"

terms will be removed when they are recognized, and the constant selector
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VAR: A: ARRAY [0. .101 OF INTEGER;

B: ARRAY [0..151 OF INTEGER;

C, F, D: INTEGER;

Q, R, K, N, LCOUNT, MTYPE, E, WL: INTEGER;

CONST: MTYPE = 360;

BEGIN

LCOUNT: = 5; R := 0; C : 0; D :0 ; F := 0; E :- 0;

READ (Q,N);

FOR K := N DOWNTO 0

BEGIN

R := R + A [2* K];

C :=C + A [3* K + 11 + 2 + N *ABS (Q);

F :=F + B [3 *K]

FOR I := 0 TO K

BEGIN

D := D + I + C;

E := E + LCOUNT;

END

D :=D* C;

END

CASE MTYPE OF

360: WL : 32;

1130: WL : 16;

6000: WL := 60;

END

WRITE ('WORDLENGTH IS', WT)

i
Figure 6.1 Example Code Fragment
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Bounds

Name Type Low High Value

K INT

N INT

B INT ARRAY 0 15

A INT ARRAY 0 10

C INT

F INT

I INT

D INT

E INT

LCOUNT INT

MTYPE INT CONST 360

WL INT

R INT

Figure 6.3 Initial Symbol Table

for the "CASE" expression will cause it to be collapsed to ( WL 32). Since

this is the only assignment to WL, all occurrences of WL will be replaced by

a constant 32 and this assignment will be eliminated. It is recognized that

"2 + N * ABS(Q)" is invariant with respect to the loop it appears in, and

its possible motion out of the loop is passed to ORD. Finally, "2 * K" and

"3 * K" are recognized as candidates for strength reduction.

Figure 6.6 shows the program tree after ORD has determined and per-

formed feasible optimizations. The expressions "2 * K" and "3 * K" in the

outer loop have been replaced by subtractions, with TI and T2 being initialized

outside the loop, and the expression A + 1 has been replaced by a constant

with the value of A + I (note that "A" is a location constant). T3 is set to

the vIlue of the loop-invariate expression outside the loop.
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ORD must finally try to set some attributes in such a way that optimal

use is made of the machine's addressing hardware. If we allow the following

access modes:

direct: indirect: indexed: 4(subcase: *

II M .

\ X\ X
M I \

immediate: I
C

where C is a constant, M is a memory address constant (possibly relocatable)

and X is an index register constant. Access Mode determination will search

the tree for such patterns and apply attributes (and possibly perform some

rearranging) in order to save instructions. The result is that Ti and T2

are bound to index registers, as also shown in Figure 6.7.

For this example we will define the following properties for the

integer instructions:

add: r - r + x

sub: r - r -x

mul: r r * x
p o

div: r +r /xo p

where r is any register, x is any register or memory location, r is an even-
p

odd register pair, and r is the odd register of that pair. In order to
0

effect proper register preferencing, we will use two attributes to each node

of the tree:

preference/Pref • odd/O, even/F, pair/P,x

don't care/D, memorv/N

result/Res : = O,F,P,M, anv register/R,x

register 2/2
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At any given node, then, the attributes of result will be passed up the tree,

while preferences for the operands will be passed dawn, while the attempt

will be made to match the result attribute to the requested preference. We

can then formulate the computations on the attributes as a function of the

op code:
*: PrefL- Pref O, Res U  P

PrefL- P, PrefR- D, Resu O

These two are relatively straightforward , since the requirements are strict.

Multiply requires at least one of its operands in an odd register, and re-

turns a pair; the dividend must be in a pair, the divisor may be anywhere,

and the result will be in an odd register.

PrefL -Pref PrefR- D
L U, R

ResU + IF Res = M THEN Pref U ELSE

(IF Res L = P THEN 0 ELSE ResL)

+ : Pref L- PrefR PrefU

ResuL IF Res L = PrefU THEN ResLELSE

(IF Res = Pref THEN Res ELSER U L

(IF Res L M THEN Res L ELSE

(IF Res R M THEN ResR ELSE

(IF PrefU = P THEN E ELSE

(IF Prefu# D THEN PrefU ELSE chose arbitrarily )
U

The latter two productions for result attributes are more complicated

because the instructions are more flexible; they may leave results in many

different places, depending on where their operands are located.

Finally, we need to determine productions for some other operators: "k
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Pref R' D (no result)

Pref D' D, Resu - R

CALL Pref R (for each R branch)- M

FCALL PrefR- M, Res 1r 2

The last referring to the system conventions that FCALL leaves its value in

register 2 in all cases. When the attributes are distributed over the tree

(i.e., it is "decorated") the result is Figure 6.7. Note that there are

several disagreements; however, all but one result may be presented in a

compatible way to the preferences - the one non-compatibility results from

the result of the FCALL being in register , whereas an odd register was

desired. This incompatibility will be relieved during code generation.

Register allocation will now attempt.to bind the various nodes to

machine locations. Figure 6.8 shows the tree at this point, decorated with

temporary names and with basic blocks delineated. The attribute analysis

made earlier determined that 0 8 must be R2 and that q2, q4, and 037

must be odd numbered registers. Furthermore, q 14, Q20 and Q26 must be index

registers.

The initial pass of register allocation now proceeds through the tree,

collecting lifetime data on all the variables and temporaries, and then the

later pass illocates on the Easis of that data. In our example the allocator

might find that it would he best to keep the loop indicies in registers. If

the machine had four registers (RO through R3), and RI, R2, and R3 could be

index registers, then a possible allocation is shown in Figure 6.9. All of

the nodes remaining unmarked are internal to effective address computations.

Code generation makes the heaviest use of the machine description

provided by the user. We will suppose the L-ops shown in Figure 6.10

have been provided. The MMM algorithm now proceeds to trv to match the

highest nodes on the tree to patterns in the LOP table. The CALL node is
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(* 1:REG 0) (EMIT [CLR $1])

($1:REG $2:REG) (EMIT JMVR $1, $2])

($1:REG $2:MA) (EMIT FLD $1, $2])

(~$1:MA $2:REG) (EMIT [STA $1, $2])

(~$I:REG (+ $1:REG 1)) (EMIT LING $1])

(~$1:REG (+ $1:REG $2:1116)) (EMIT IADI $1, $2])

($1:REG (+ $1:REG $2:MA)) (EMIT IADD $1, $21)

($1:REG (-$1:REG 1))' (EMIT [DCR $1])

($1:REC ( $1:REG $2:#116)) (EMIT [ADI $1, - $2,])

0' $1:REG (*$1:REG 2)) (EMIT [SLA $1])

(-- $1:REGP (*$1:RECO $2:MA)) (EMIT [MPY $1, $2])

(CALL. $l:NA{iE $2:LIST) (EMIT FJSR $1 ; $2])

(-$1:REG2 (FCALL S1:NAME $2:LIST)) (EMIT [JSR $.1 ;$2])

(UPLOOP $1:REG $2:MA $3:M.A $4:TREE)

(EMIT ILDA $1, $2 ; CENLBL $5;

CPR $1, $3 ; BGR $6 ; $4;

INC $1 ; BRU $5 ; GENLBL $6])

(DOWNLOOP $1:REG $2:MA $3-.MA $4:TREE)

(EMIT ILDA $1, $2 ; CENLBL $5;

CPR $1, $3 ; BLS $6 ; $4 ; DCR $1

BRU $5 ; GENLBL $6])

Figure 6.10 Example LOP Dscription
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matched immediately; the generated code is temporarily linked to the tree

for later collection and the algorithm proceeds to the assignment of 2 * N

Ti. This is a little harder, since no tree directly thatches the node (TI is

a memory location). The search algorithm will match the SLA instruction and

then attempt to recurse on the rest, finding the STR instruction. Note that,

because of the ordering of the LOP, the SLA was generated instead of an MPY

instruction.

The algorithm will proceed through the rest of the tree in a similar

manner. Finally, the algorithm will walk the tree, building the doubly

linked list of instructions in correct order (Figure 6.11).

After code has been generated, FOP performs post optimization on the

code. Because of the simplicity of this example, cross-jumping, simplifi-

cation of operators, and span-dependent instruction optimization are not

performed. The single post optimization done is the elimination of the

redundant operation "LD RI, T2", which is marked with an asterisk.
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JSR READ CLR R2 # OPENING CODE FOR

QLIST L3: CPR R2, K # UPLOOP

LD Rl, N BGR L4

SLA RI LD RO, D

ST Ti, Ri ADD RO, I

LD Rl, N ADD RO, C

MPY Ri, THREE ST RO, D

ST T2, RI LD RO, E

JSR ABS ADI RO, 5

QLIST ST RO, E

MVR R3, R2 INC R2 # CLOSING CODE FOR

MPY R3, N BRU L3 # UPLOOP

ADI R3, 2 L4: LD Ri, D

ST R3, T3 MPY Ri, C

LD R3, N # OPENING CODE ST Ri, D

# FOR DOWNLOOP LD Ri, Ti

LI: ADI RI, - 2

CPR R3, ZERO ST RI, Tl

BLS L2 LD RI, T2

LD Ri, Ti ADI R, - 3

LD R2, R ST RI, T2

ADD R2, A(RI) DCR R3 # CLOSING CODE FOR

ADD RI, C BRU Li # DOWNLOOP

ST R2, C L2: JSR WRITE

*LD RI, T2 WLIST

LD R2, F

ADD R2, B (RI)

ST R2, F

ZERO DATA 0

THREE DATA 3

QLIST DATA I

DATA Q

WLIST DATA 2

DATA '---'

DATA 32
Figure 6.11 Code Generator Output
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Introduction

This paper briefly describes a number of computer descrip-

tion languages (CDL's). Rather than give a separate description

of each lanQuage, the discussion focuses on groups of charec-

teristics. The languages are described and compared in terms of

each group. This should serve to make the Presentation easier to

comprehend and allow the reader to select those aspects of CDL's

of most interest to him. Section 2 presents the orocedural

languages, while Section 3 presents the non-procedural languages.

Each language group is summarized separately.

Because of the large number of existing CDL'IS this paper

does not try to be exhaustivep though an effort was made to in-

clude languages with wide applicability. Sectton 4 gives some of

the languages that were left out and some justification for doing

so. Section S discusses two languaqes, ConLan and RTS III# that

look promising and snbttousp but which are still beina defined.

Section 6 gives some conclusions and summary remarks. Section 7

summarizes the languages in a table for easv reference and com-

parison.
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Preceaural Languages

Tne distinquishing feature of a orocedural longuAqe is that

it attributes a significance to the lexical order of the action

statements, Generallyr the action statements are urouOO into

"steps" (or "time blocks"). The statements within a given group

are assumed to operate in parallel. The irouns are Performed in

order as they are listen in the text. f;enerally, ifferent se-

quences of aroups can operate in oaraflel. rhis series-narellel

sequencinq structure can generally be nesteo to any IeotK. Some

lanquages have more general parallelism constructs.

The lanquaoes considereo herm are IbP fhN71)] , AP)L rLar'hi$

LALSO [$SI75a], SMITF [TPw77lp ano I.Cu (i 4] . The aneiuaoes are

described ann corna)ared on the basis of a few rharacteris 4ticq at a

time,

Purpose, Pescrintion Tyre and Level of Oescription

------ ----------- ---- --- ----- -------------

First, the lAcnuagps are compared on the tbasis of ouroosO,

description type, ano level of description.

Purpose here refers to thc applicotions a lanqUane is tar-

qeteo for. A lanouage designer may focus on aoels for A lanquale

that are not directly relpted to the tarnet arrlicatimns (reada-

bility, writAoility, careful treAtpmpnt nf tiivn, pnwrful compo-

sition constructs, Pxtersi.ility, etc.). Many of tle Areas ad-

drosspo hy these goals are miscussenl later. Ctherq Pre too sUO
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jective for systematic eva)uation and comparison. Thus, someone

interested in a Comprehensive treatment of the objectives of a

lanquage is best advised to refer to the language defining docu-

merit.

Oescrct on tyoe refers to the general asects of the ways a

lannuaqe can be used to descrioe a dicital system. First, a des-

cription may emohAsize the behavior of o system (the Actions Per-

formed bv the system) or its structure (the components and their

relationships). 4hile rursuing either of these orientations or

some combination, a descriotion may Qive a specification, treat-

Ing the system as a "lACk box" and giving only its I/0 behavior.

Alternatively, a descriotion may give an imnlementation, minutely

detailing the behavior and/or structure of the system. It should

be noted thAt a lanoumqo can allow, or insist on# redundancv in

the form of alternative descriptions for a system or subsystem.

The alternatives may have different orientatinns and/or different

degreps of detail. This redundancy may he exoloited through

human or machine consistency checkino. To summarize# description

type includes the oriontatin (structure vs. behovior)v level of

detail (specification te imnlemtationl, ano redundancy possible

with a languaoe,

The level of a description refers to the level of orimitives

used in writinq the description. The level moy tfe component cir-

cuit, switching circuit, register transfer, TSP, or PMS. The

cofponeet circuit level deals with diooe%, transistore, regis-

tore, etc., and their interconnections. The switchino circuit

level Heals with logic cates And flip-flops. kegister transfer

orimitives include re isterst combinatoriAl eupressions ann dis- b



crete date and control operetion steps. The 15S' (instruction set

processor) Primitives are interpretation rulesp the memories vi-

sible to the programmer and instructions (In terms of visible

memories). The PMS level describes the gross comoonents of a

system (Processorst Memories, Switches, devices, etc,) giving

their general capabilities and their interrelationships. The

reader should be careful to distinguish level of descriptiton

from level of detail. The two do correlate weakly, but the

letter is concerned with the kinds of orimitives available for

writing a description, while the former is concerned with how de-

tailed a description is. For a more through discussion of des-

cription levels, the reader should see (BN71) ano (895].

ISO

The language ISP was developed for exposition.

Particularly, its initial purpose was to concisely describe the

instruction sets for various diverse computers& Tt is oriented

toward describinq behavior with some aspects of the structure

being implied. ISP is useful on all levels of detail, from

top-level soecification to a detailed discription of an implemen-

tation. ISP does not allow for redundancy* ISP in mainly a reo

gister transfer language, though it can be used at the 1SP level

of description.
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APOL

APDL was designed for design, simuletion, and documentation*

it is oriented toward behavioral descriptions. The descriptions

are close to being a specification. APC)L orovides register

transfer level nrimit',ves. Redundant descriptions are not al-

1lowed.

LA LSD

LALSD was intended fcr use in documentation, simulation, and

design. It is oriented toward describing the structure of a sys-

tem, The description may be at any level of detail from specifi-

cation to implementation. At any level of detail above imPlemen-

tation, a high-order language may be used to describe the behavi-

or of some parts of a system. Redundant descriptions are not al-

lowed. LALSD's primitives are on the register transfer level.

SMITE

SMITE was developed for use in developing emulators to run

on a QMW1. SMITE is oriented toward behavioral diescriptions,

It can be used for specifications through implemantation descrip-

tionse No redundancy is allowed. SMITE's primitives are on the

register transfer level.
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LCD

LCO is intended for use with comouter deiqn. It is orient-

ed toward behavioral 0eSCriPtionS. It is not suited to writing

high level specifications, but it can suppress some optail,

though the lanauage is mainly appropriate to describinq specific

implementations. Redundancy is reQuired, Fech module must have

at least a general description of hehavinr. Each module, except

one on the lowest level, must also have a oescription of the data

objects and control senuences which imolement its behavior. LCD

is mainly a register transfer level lanouager tut can be used as

an ISP level language.

Data, Carriers, Ono Assignments

Now the languaoes are compared on the basis of the date fa-

cilities, carriers end assignments they nrovide. flata suonorted

for compilation and in the described machine are distincuished.

Carriers are the elements of a system that hold and transmit

data. They may simply he terminals (wires or connection points)

which retain a given value only so lona as that value is applied

to them. Busses, which might be considered a variety of termi-

nal, sometimes recieve srecial supPort from languaqes. This and

the fact that they are so widely useo merit busses beina sinpleo

out at 8 Carrier type when a languawe supports them. Finally, a

carrier may be a reoiater, an element that retains a vflue over

time without an input being rplied,
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Assignments may serve several purposes in a computer des-

criotion. They may represent setting some register or applying

an inout to a terminal, Assignments may set the value of

compile-time bookkeecing variables. Assignment may be used to

represent multiplexinq or pulsing. Finally, assionment may re-

present renaming of some structure. Each one of these functions

may have a separate symbol, For a thorough discussion of the as-

signment statement, see [JS771.

ISP supports bit* and ienteers as data both durinw compila-

tion and in the described machine, Both constants end variables

are supported* Vectors and matrices of bits are supported, A

vector of bits or a row of a matrix may be used as an inteqer,

Date format description tools have never been defined for ISP.

Indexing and renaming are supported for accessing. An index ex-

pression may specify a range or list of indexes. Any data object

may appear in an index expression. Any data obJect, indexed or

not, or collection of then, may be aiven a name. The renaming

may also be used to view the otJect or collection as an array or

matrix with index ranges of its own. Thus, names may be qiven to

subreoisters and collections of registers. ISP Primitive opera-

tions include the normal arithmetic operators, logical AND, OR,

exclusive OR, equivalence and NOT. The orimitive operators also.

include all the relational operators and a rich set of shift 00"

rators, Exrressions may be arbitrarily comolex, The only car
e

Prers ISP supports are recisters, Renaming and transfer assign-
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erits are supported.

APOL

APDL provides binary, octal, and decimal data objects, Also

supported are switches, data objects takinq on statement labels

as values. The numeric ohjects may be composed into vectors and

matrices. Matrix rows and vectors may be treated as Positive in-

tegers. No description of abstract formats is Possible. The in-

dexing and renaming caoabilities are Anilogous to ISP, execot

that an index for referencing a row of a matrix may only specify

a single row.

The boolean operators, AND, OR, NOT, and exclusive OR, are

provided. They treat 0 as true and I is false. The standard ar-

ithmetic operators are prcvided for integers, and all the stan-

dard relational operators are provided. Derringer's article

(Darb8] does not specify any expression comoosition, but does

seem to allow their inclusion in ; languane implementation.

Registers are the only carriers supportod, anm transfer is the

only assignment supported.

LALSO

The only data type supported by LALSO is bits. 4its may he

composed into vectors. Collections of objects and vectors can he

renamed as vectors. Exrlicit address registers must he given for

"memories", arrays of multi-bit repistors. Indexinq of memories

must use this address register, Primitive operations include in-
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crement, decrement, shift, complement and concatenation for vec-

tors, treatino vectors as integers when epnropriate, AND, OR,

NOT and exclusive OR are provided for hits, The full range of

relational operators are available which treat vectors as irW

tegerss Conditions may be arbitrarily comolex combinations of

bit and relational operations,

Registers and terminals are supported as carriers.

Assignments can he used for connection. Transfer is represented

with a command that looks like a proceedure call.

SMITL

SMITE provides bits as a primitive data tyoe. They can he

composed into vectors and matrices. Formats may be described,

They aive names to subworcs of abstract structures. These named

subwords can then be used to reference subworos of concrete ob-

jects. Also, specific sections of specific objects can be given

unioue names. Any value can be used as an index, Primitive oo-

erations include addition, subtraction, a full complement of re-

lational operators, AND, OR, NOT, exclusive OR, and concatena-

tion. These operations. toqether with assinnment, may be com-

posed arbitrarily into exrressions, so long as each subexpression

returns a sinale value. ASSignment returns the value assigned.

Operations are evaluatec from rinht to left normally, 1ut par-

entheses may be used to overide the usual inteoretation,

Only register type carriers are supported, and transfer is

the only assignment supported.
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.CD

LCD provides support for bits. A bit may take on a value of

0, 1, or UNDEFINED. LCD also supports variables that take on

symbolic values. These variables may be tested for equality or

inequality only. This support is helpful for simulation using

symbolic execution. Vectors end matrices of hits may he speci-

fied. Concatenation, AP[)#, OR, NOT, and the standarn arithmetic

operators are provided, The arithmetic operators treat vectors

and rows of matrices as intepers. AND reduction of vectors is

also provided. Symbolic manipulation of symoolic values is pro-

vided. Any expression may be used as an index. Lxpressions may

be arbitrarily complex.

8ussesf registers, and terminals are supoorted as carriers.

Assignmont to a register is a transfer. Assionment to a terminal

,maintains the assigned value in the tariet for a time step.

Modularizatlon, Control and Its Relation to Data, end Time
-- -- -f t~ ---- -- -- We --- -- - -- -- -- a ... a n -- W--

This section deals with a set of cheracteristics of how a

lanquage describes the decomposition of structures and the decom-

position anri control of processes. These characteristics are:

1) the modularization concepts; ?) the control constructs; 3)

the treatment of time; and 4) the relationshio between control

and doat.

It is useful to modularize a SyStem in ooth time sna- soace.

Sace modularilzatlon is seen in the oartitionnno of a system into

memories, contro)s, ALU's, and busses. Time modularization is
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seen in the mefinition of instruction fetch cycles, interface

protocolsp and instruction decode processes,

A language must Provide ways of describing the processes and

structure that make up a machine. For nontrivol Processes, me-

chanismS must be provided for making choices and specifying iter-

ation. Since comoux'r$ make major use of parallelisme a languaoe

must he able to express parallelism and coordination of Parallel

processes* A descripotion of hardware structures must include

descriptions of their interConection# , Finally# languages must

also Provide forms for excressing modularization.

Connection, senuencing, iteration, decision, and modulariza-

tion are more concerned with the organization of the actions ana

Components of a machine than with what the actions ancl components

actually are. Organizational forms and mechanisms are referem to

as control constructs, The kinds of control constructs nrovideo

by a language greatly affect its power and ease of use. For in-

stancP, a series of if statements can be used to make a choice

among several alternatives, but a CASE or DECODE statement for

the some decision is much easier to write and clearer to unrwep-

stand. Macros can be very useful, as is the ablility to apply

desCislon mechanisms to structure, The construc -s then tecome

compile-time mechanisms. Iteration can be a Particularly power-

ful &rs clear way of describing a large regular structure. Then
tlhere are structure amd rrocels control constPvctv, which can be

livided into seouencirq and svnchronization constructs.

SLauencinq constructs incluoe selection and FOWK.

Svnchronization Constructs include JUION sno signal-weit.
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Time is of nreat importance to any computer design.

Lanouages Provide various ways of measuring and desCribinQ ti'-

Mng.

A common characteristic of the lanouages described in this

paper is that they provide for the separation of control and

date. The data are the memories and terminals and tte control is

the processes. It is alsc imoortent tnAt the control ano oatF he

able to interact. It is convenient to tave the control state as

data. Control state changes must sOmetimes be ased on late*

Thus the possible interactions of control Ono data for a

languages are discussed.

Isp

ISP Provides for mndularlzation in the form of stbrroceourms

and parameterized structure-. Thus, macros are provlie.

Sequencina is series-cerallel in straight text. IF..THFN.,EL

anti OFCODE are provided for control flow selection. Recursion is

the only iteration comstruct avnilable. SIGNAL-wAIT SynchroniZ^-

tion is provided. Timing is virtually icnored in that onre ca -

specify the time reouirempnts of crocesses An1 the only svr - -

Iraticn Possible is thro,Jgt the series-parallel se1ue . ..

expIicit synchronization throuqh SI(GNAL ea A IT. r ,.

oata are kent seper'-e except that control -4erigirn -, ,

on date through IF.,TFN,...EL ,... ann FACOF c-s ' -
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APDL

APOL provides process modularfzation through procedures and

functions, IF,,THEN9,ELSE is suoported as a sequencing con-

struct. So are GOTO and IF EVER# which is similar to the ON CON-

DTTION of PL/I. Another Sid to decribing sequencing is the time

block, The statements inside a time block ore executed in Pare-

le. The time blacks may not contain time blocks. Time require-

ments for time blocks may be specified. The aota type SNITCH

from ALGOL is evailole. and may hold-an arrey of labels as va-

lues. It can then be usec to facilitate a sequence selection.

LALSO

Structural moaulerization is supported by UNITS and FUNC-

TIONs. UNIT@ describe related structures and control processes.

while FUNCTIONs describe combinatorial networks used within a

UNIT. UNITs may be nestec. Statements in a UkIT may use objects

defined in an outer unit through use of an imoort specification.

Sequencing constructs similar to IF..I4EN*,EL$Er CASE, and

FORK*,JOIN ore provided. Iteration on a condition can be speci-

fled. It is possible to %*it on a condition or have execution of

a UNIT be dependent on the setting of some control variables.

Control and data are very strictly separated# though control de-

cisiono may be bosom on data values. It Is possible to specify

one or more clocke, which may be indepenOent or synchronized with

other clocks.
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SMITE 1
SMITE provides for subproCedure% through POMCESSOR,.

IF,.THEN,.ELSE and CASE are Provided for sequence selection,

Iteration on a condition and for a count are provided. A DO FO-

REVER construct is Drovidedo and a loop ESCAPE, PARALLEL-HFGTN

and PARALLEL-END are provided to surprt series-parallel seonuenc-

ing. The time requirement for any simple or cnxposite oneration

may be specified, Control end data are carefully separated, but

control decisions may be based on cats values.

LCD

LCD supports subprocedurese It has hlock :tructure scope

rules. IF.,THEN..FLSE is provided for sequence selection and

WHILE is provided for procedural fteration, One implicit, dig-

crete clock is assumed, Relative timinqs of events may be speci-

fied based on this clock. These timings can override lexical

order in Specifying sequence. Control and date are kept serarm

ate.

Generality, Readability and Weitability

The languages are now compared on the basis of their qefler-

olity, readability and writability. These characteristic* are

Similar to those discussed by darbacci (bar?53. The main noints

Offecting qenerality that are examlneo are assumntions about the

machines being descrihed, whether the lanousgqe can work on dlfi
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ferent description levels. extensibilitv, existin4 applications

based on the languaqe and machines described in the language. Of

these five points, It is hardest to got good information on whet

machines have been described in a language. The lists given for

described machines should not be taken as at all exhaustive, but

Just as miscellaneous information* The aspects of writability

and readability lookeo at are familiarity of lanquage structires

and operstors, simplicity and fidelity Possible between the

structu.e of a descriotion and the described machine.

ISP

13P has shown itself to be capable of describing a wide var-

iety of machines. Bell and Newell give numerous descriptions in

ISP (BN713. In addition, Carnegie-Mellon University has compiled

numerous descriptions in ISPSf a variant of ISP. Among the de-

cribed machines are the IBM 360, IBM 370P Mark if PDP8, PUPIO,

and various POP1I's. One reason for this generality is that ISP

makes few assumptions about machines, The main ones are that the

state of a machine is embodied in its memories and that all mo-

dule interfaces are realized with registers. ISP ismainly suit-

ed to the register transfer level of oescription. It can come

close to the ISP level. By restrictinq the operators and the

complexity of expressions, ISP con be stretched to the switching

circuit level, ISP has explicitly allowed for extensions throuqh

allowing qualifiers on all its expressions, operators and con-

structs. These qualifiers can be used to put extra Infoemation

into a description. The language can also be extended by adding
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niew operators or new attributes for modules and registers.

Furthermore# information required by special automated uses of an

ISP description may be put into comments. ISP descriptions have

been translated Into low level computer fabrication Instructions

and ports lists. They have been the basis of automated software

generation and simulations, ISP has also been used for classroom

desi.gn efforts@

ISP is highly readable and writable, since# after all, it

was originally developed for exposition. Its structures and op-

erators are largely based on ALGOL. One indication of its sim-

plicity is the small size (6-8 pages) of its own FNF grammar des-

cription. It is therefore simple and familiar. Its general mo-

dularization suooort sno support of vectors and matrices of hits

allow a description to closely follow the structure of the 6es-

cribpd machine. This fidelity is alio enhanced by the ability to

share resources between modules and specify explicit synchronize-

tion and series-parallel sequencing.

APDL

APOL makes no explicit assumptions about the machines it

describese It can be used on an ISP an well as a register

transfer level* It is extensible throuqh new operators. It has

been used for simulation and to generate detailed hardware des-

criptions. No data has been found on what devices have been des-

cribed in APDL,

APOL closely resembles ALGOL and has moat of the simplicity

end familiarity of that lanquage. Its general modularization Ca-
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pability should allow close fidelity between a description and

the described machine.

LALSO

In LALSD a oigital system consists of a collection of units

whoie operation is controlled through explicit control signals.

Each unit in turn has the ability to generate sequence* of con-

trol signals to operate its subcomponents. The language can only

work at the register transfer level. It is extensible through

the addition of new operators. It has been used for simulation

and logic desceiption generation#

LALSD is a rather complex language requiring oll descrip-

tions to have a fairly complex structure. It would hove a hard

time describing with much fidelity a machine that was not a sys-

tem of cooperating units, such as *-machine implemented through

micro-programming, where the complexity lies in the stored con-

trol program more then in the hardware, While LALSD provides a

lot of familiar end useful facilities* it uses unfamiliar con-

structs to support them, For Instance# 0/ condition /0 means

await on condition" end " [A) -) 80 means i1F A THEN SO.,

SMITE

SMITE Is only useful at a register transfer level of des-

criotion. It makes no restrictive assumptions about the machines

it describes. It is extensibile through the addition of opera-

tore, SMITE Is used for writing emulators for the GM-I.
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The language is simple# and uses familiar Constructs. Its

modularisation capsailities should allow a description to closely

follow the structure of the described machine.

LCD

LCD assumes that the operations in a described machine take

place In discrete steps In time with a single system clock. It

is useful at the register transfer level only. It can he extend-

ed through Introducing now operators. LCD is being used for de-

sign and simulation.

The language uses familiar constructi and allows for simple

descriptions except for the recuirement for redumdancy. The re-

dundancy may aid understardina of the description and automated

consistency checking. The modularization capabilities of the

lehguage should allow the structure of a description to closely

follow the structure of the described machine,

Summary

It can be seen that there is a great deal of similarity

among the various procedural languages, especially in the facili-

ties they Provide. Puposes vary& but most are oriented toward

describing the behavior of a system at any level of detail using

RT primitives, Data objects supported are similar among the

lanauages, with bits and Integers being provided along with vec-

tos and matrics of hits. Intogers are assumed to be vectors of
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bitS. While only SMITE provides for abstract format specifics-

tionse most languages allow the renaming of fields of specific

vectors for ease of access. Indexing Is always supportedp but

sometimes restricted to use with exolicit address registers or

simple expressions, Arithmetic# booleon, and relational opera-

tors ore generally provided along with concatenation and shift

operators. All of these operators are available for use in arbi-

trarily complex expressions. Registers and terminals ore usually

provided as data carriers along with transfer and connection so--

siaments. Some concept similar to subprocedures and functions is

usually provided for modularization, though the form of the con- 

trol constructs and their exact semantics do very. Most Qf the

languages are rather easy to write and understend, since they all

(to some degree) are simplo use familiar constructsr end provide

a fair degree of fidelity to the described hardware. Also, a

wide variety of control constructs are provided. Howeveor

IFooTHENoELSE.., or sorething analegoust is the only construct

always Provided. Generality and treatment of time very widely

arong languages.

ISP, with its unique emphasis on exoositiont is the most

general of the procedural languages ana is the most extensible#

as well. Its series-parallel seouencing and sigal-wait syn-

chronization primitives are very high lovelp lacking the ahility

to Precisely describe fine timings.

APDL is unique in heinq mainly concerned with soocification

of a system without attention to design details, In support of

this, APDL Provides the wiOest variety of data types, including

state encodings (called switches)# which are not supported by any
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other procedural languages. In addition ,APDL is the only eroce-

dural languoge to hove a GOTO or on interrupt handling primitive

(IF EVER...). Its time block# Which allow for Some parallelism

and timing specificetione is unusual# also.

LALSD is the only structurally oriented Proceoural languaoe

and is aleo, appropriatelyp the only procedural languaqe to fea-

ture a connection assignment, LALSD is a lower level language

then the other procedural languages, as exemolified by its rell-

once on metronome-like clccks and the requirement for an ex0licit

address register. One interesting aspect of LALSD is its use of

controlled scopes. Otherwise# however, it is less easy to use

then the other languages due to its complexity and its use of un-

familiar constructs.

SMITE is the only language designed for emulation.

Otherwise it is distinquished by its wide variety of useful and

familiar control constructs and its ability to receiselv descrine

timing requirements.

LCO is the only languaqe to allow for redundant descrio-

tions. It also allows for orecise description of timino.
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Non-procedural Languages

The languages described in this section are CDL CChu65l, DOL

(00661P MOP (Cat7t) e Cassandra ( GL71), ERES (GHH77I, and AHPL

(HP731), (Ht l5], The organization of the discussion In this

chapter will be similar to that of the second chapter#

Characteristics of the languaoes will be orouoed in the same way

with the languages beinc compared on the basis of each grouo in

turn. The definition of terms and discussion of issues will not

be repeated, The reader is left to go to the second chapter for

this material.

Purpose, Description Type, and Level of Description

COL

COL was developed for use with digital desion and simula- )

tions Descriptions in CDL specify a very detailed implementa-

tion. These descriptions are oriented toward the behavior of a

system rather than its structures CDL primitives are on the re-

gister transfer level. Redundant descrfpti.ons are not allowed.

0%-

DOL was developed for dinital desion. It can be used for a

wide range of levels of detail. The descriptions are oriented
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toward the behavior of a system. DUL primitives are at the re-

gister transfer level of description. Redundant descriptions are

not allowed.

MOP

MOP was intended for use with the automatic generstion of

software. It is oriented toward the behavior of machines and the

descriptions written in MUP are high level soecifications,

Redundant descriptions are not allowed. MOP's Primitives are

strictly on the ISP level of descriotion,

Cassandra

Cassandre's purpose was to aid design and levelooement of

digital systems. Cossanare is oriented tnwkrd descrihinq the be-

havior of a systev more than its structurp. Descriotions in ras-

sandre ean be at any level of detail from a high level specifica-

tion to a detailed imriementation. Cassandre Primitives are at

the register transfer level of description. There is no al-

lowance for redundant aescriptinns.

LPES

ERES was designed for uise in Computer hardware design. ERES

is oriented toward desCritino the structure of a computer, and

can be used for descriptions over a wide range of levels of deta-

Ile Redundant descriptions are not alloweo. ERES can he used at
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the register transfer or switchin circuit level of description.

AHPL

4HPL was developed for use in teaching design. Descriptions

in AHPL are non-redundant and are oriented toward the behavior of

a sYsteme AHPL is appropriate for writinQ specifications and Can

be used to describe a fairly detailed specification. The

language is mainly useful on the regist-er transfer level of des-

criptione though it can be used to do some description on the

switching circuit level.

Data, Carriers, and Assigments

CDL

CDL suOports Oits and integers in the described machine.

Vectors of bits may oe defined. PMemorieso arrays of reoister

vectors, may he defined with an explicit address register for in-

0exina. Vectors of bits may be treated as integers, Pegister

subfields end collections of reQisters 'may be given names for

ease of reference. Addition# subtraction, 4ncrementation and de-

crementetion are defined for inteqers. The logical onerstors

ANt, OR, NOT, and EQUIVALENCE are provided. A full set of shift

and relational operators are provided. A concatenation operator

is Provided, In addtion, FETCH eno STORF are Provided for memo-

ries. Since CUL operations are supoosed to be done in a single
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clock period, expressions must he kept simple.

Register and terminal carriers are Provided along with sep-

arate transfer and connection essionment. The connection as-

signment symbol can be usea to represent multiplexing or renam-

ing, A distinct exchange ooerator is provided for swaooing the

values stored In two registers.

DOL

The only data type Provided by DDL for the described machine

is bits, and integers are provided as compile-time bookkeeping

variables. Arrays of bits may be defined with an arbitrary

number of dimensions and arbitrary index hounds. Index for-ation

rules are those of ISP (see Sec 2.2.1). Subfieldn of arrays and

cnl1ections of reqisters may be renamed as single arrays. The

logical ooerators AND* NAk l, NOR, eiuivalence, OR, ant exclusive

or are provided. Addition# subtraction and the usual relational

operators are provided alcq with concatenation, complementation,

selective complementation, and reduction for vectors.

Arbitrarily enmolex expressions may be formed. Hegister end ter-

minel carriers are nrovided. Connection, transfer, rpn~minQ. and

bookkeeping assignments are suported.

MOP

MOP assumes that carriers in ^ machine are composed of bits

and it supports any data type encoded in a vector of hits.

Vectors and matrices of bits are supportem and stronq format
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apecification tools are provfdeo. Rows of matrices may be se-

lected through indexing ana fields of a row may be specified,

Any exoression, including an indexed value may be used as an

index. These accessing primitives may be used to define nemw ac-

cess modes that can them be used by other parts of the descrip-

tion. Normal proqramming language data operators are available

along with common machine language operations. These operators

may be combined to form arbitrarily comolex expressions, MOP

only allows for register carriers and transfer assiqnments.

Cassandre

Cassandre suoports integers and bits which may he composed

into vectors and matrices. Bookkeeping integers are also provid-

ed. Constants and ranges of constants may he used as 4ndexes.

The result of a decode operator, whose operand is a bit vector#

may be used as an index when a data value needs to be used as an

index. The following operations are provided: AND# OR, eouiva-

lence, exclusive or, reduction of a vector by these first fourr

concatenation# nepation and the previously mentioned decode oper-

ator. Arbitrarily complex expressions may he formed using these

operators, except the decode operator. If the decode ooerator is

used in an expression, the expression must involve only a direct

connection or transfer of the indexed value.

Register and terminal carriers are provided. A connection

assigqnment is provided for terminals and a distinct transfer as-

signment symbol is provided for transfers. Transfers must be

controlled by a clock signal. A bookkeepino assignment is oro-
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vided for the bookKeeDing integers,

ERES

ERE$ supports bits as its primitive data type. Pits can he

composed into vectors end matrices. If variable expressions are

to be used as an index for a row of a matrixt an explicit adopess

register must be specified, Groups of arrays and bits, subsets

of arrays, and group$ of subsets may be renamed to facilitate

multiple views and accessing methods for structures, ANn, OR,

NON, addition, and incrementotion are provided as primitive over-

ations, as well as others, Any vector may he interoreted as an

integer for arithmetic purposes. Arbitrarily complex expressions

may be formed.

Terminals and reristers are supported e carrierst with con-

nection and transfer assignments being provided. Multiolxina is

assumed if multiple connections are specified to the same termi-

nal. Renaming is expressed with an assignment statement.

AHPL

AHPL Provides for operations on bits and integers. The in-

teger operations operate on vectors of bits. Support is provided

for vectors and matrices of bits with the rows of the matrices

being accessed only throu1h constant indices or an explfcit in-

dexinq operator# while columns may only be accessed throuqh con-

stant indices, It should be noted that honkkeepinq inteqers are

provided at compile time which may be used in place of constant
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indices. There are no format description tools provided, AIPL

provides the standard arithmetic, boolean, relational* and shift

operators, as well as absolute value, maximum, minimum, concate-

nation, decode, encode, reduce and compress ooerators, A func-

tion, synt is provided for detecting signals from asynchronous

systems* It is true if its argument, a siqnalo was recieved

since the last clock signals Expressions not involving the in-

dexing operator resemble those of APL. The expressions may be-

come aroitrorily complex except that one would went to limit the

operators and the comolexity of exoressions for more detailed

descriptions. The indeing operator may only be used where the

index is held in a simple register (bit vector) and the indexed

value is directly connected or transfered to a terminal or regis-

ter, respectively.

AMPL Provides a variety of carriers and assignmentse The

carriers include inout terminals, output terminalS, registers,

busses# ONE SHOTs, and bookkeeping variables. Assignments can be

used to describe multiolexed or permanent connection to the ter-

minals and busses. ONE SHOTs have some default value which will

change for some period after being set to the non-default valv'*

The delay time (the amount of time th6 device maintains -he

non-default value) is specified in the ONE SHOT's declaration.

Assignment is used for the transfers to registers and ONE SHOTs,

and for setting and changing the value of bookkeeping variables.
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Modularization, Control and Detar and 'ime

COL

In CDLP one may perform some structural modularization

througfh defining combinatorial networks, Sequences of actions

may be defined, facilitating orocedural modularization. goth of

these definitions are available throuqhout the descriotlon in

which they appear, A DO construct is provided to envoke orede-

fined action sequences and an IF,.THEN,,ELSF is provided for pro-

cedural selection (choosing between alternative actions).

Activation conditions are used to control actions. All the ac-

tions associated with an activation condition are performed in

parallel when the Condition is true. A single clock may be de-

elared and is reQuired. It is usecs to describe a machimnes beha-

vior with respect to time. Control and data are separately iden-

tified with IF..THEN*.ELSE and the activation conditions allowing

control functions to be affected by data*

DDL

DDL provides for structural modularizatlon through defini-

tion of combinatorial networks and declaration of ELEmENTS. spe-

cial units with unspecified structure and behavior. These spe-

cial units may be uses to suopress setal. nbjects declared

within a module are only accessible within that module.

Boolean networks are declared with a BO statement.

Combinatorial networks (related blocks of terminals and hoolean
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networks) may be declared using Op Statements, An EL statement

aefines the input and output ports of a component without defin-

ing its beshavoir or Inter"0l structures The component is avail-

able for use within the module where the component Is declared.

There are three levels of modules in a DOL description. The

top level# celled a system, corresponds to the entire described

machine. The system is diviced Into automatons and the outema*

tons are Subdivided Into segmmts, with seaments being optional.

Only the bottommost level may have action statements* Note that

this Puts a low limit on the amount of nesting possible In a dos-

ecriot ion.0

Structural iteration is possible and is aided by a compile

time control variable. Procedural Constructs analogous to

IF..TI4EN..ELSE end CASE ore provided for orocedural selection, A

macro facility is providea by the 10 statement* though parameters

are not supoorted.

Sequencing is controlled through states. Only one state of

an automaton may be active at any one time. The actions for a

given state are Performed im Parallel and listed together with a

* label for the state, A condition may be specified for a state so

* that If an automaton reaches that state, the actions for the

state will not be performed until the condition is satisfied.

State changes are explicit operations, The state may be encoded

in a memory and the register specifying the current state may he

given a name. State changes between segments of an automaton

specify a default return state within the crpret segment. Thus#

among other things, an operation may treat a segment as a suboron

cedure by Specifying the current State as the return state. it
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Is possible to specify a conoition for any level module. The ec-

tions of that module will be held up until the condition becomes

true, It is possible to specify a set of actions for an automa-

ton or segment, These operations will be performed in each state

of the automaton or segmemt, respectively.

Delays &no single or multiole clocks may be specified to

allow description of the behavior of the described aevice with

respect to time.

MOP

There Is only one modularization concept in mOP in the sense

of grouping of functions or structures un-er a name. This Con-

cept is the Operand Class, which defines a set of addressing

methods for easy reference. Since Operand Classes may overlap.

they are a kind of macro facility. However, the languace does

provide for (force, really) a partitioning of the conceptualiza-

tion of a computer, The interpretation cycle, memories, date

types, addressing modes, operand classes (discussed above), in-

struction fields, instruction formats and instruction k ehavior

are each treated seoarately.

MUP assumes an implicit interpretation cycle which controls

which of the described instructions is nerformed at any given

time. Because of this and the fact that MOP decribes very hlqh

level behavior, the motivation for control contructs is low. The

main control construct is analogous to TF..THEN..ELSE and is used

in describing instruction actions.
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pehavior with respect to time is described through Specify-

Ing a time cost for each Instruction* Control and data ore koot

separated except that decisions about actionst includino OPOgPra

counter modificationt may be baed on data values.

Cassandre

Cassandra allows a system to be decomposed into units.

Units may be nested and may be connected arbitrarily* This al-

lowe the description of any system of interrelationships. One

can also define sequences of actions that can be Invoked from

several Places in a unit,

one may soecify that multiole units within a given unit may

be active. Pulses may be transmitted between units for synchron-

ization end communication. Clocks may also be used for timing

and synchronization.

Fach action statement is either labeled with a stat* or Is

* part of a labeled group of statements. Only one state of a unit

* Is active at &ny one time and transfers between states are expli-

cite States may be encoded in registers. IFeTHEN,.ELSE is Pro-

vi'led for procedural seection. Structural Iteration is orovided

for Parallel execution.

FRES provides for definition of action seOuences and 6oolean

networks as aids for modulerization. Actions and groups of ac-

tions are controlled by activietion conditions, IF..TtENeeELSE
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is provided for Procedural Weection.

FRES allows specification of the ti'me roquired for simple

and composite actions. All transfers are dependent orn clock

pulses* In an extended version, multiPle, Possibly asynchronous#

clocks may be specified ea Primitives are Provided for coordina-

tion of asynchronous parts of the system, The basic version of

ERES allows for a single clock for the systeme

AHPL

The modularization constructs orovioco by AHPL support the

definition of undescribed comoonents and cnmhinatorial networkse

These networks are low level modules involvina simple data opera-

ttons end no iteration, though they Can describe rather complex

patterns of connection, An ANPI statement consists of aetions

together with branches for deciding the state transistions. The

actions can be any mixture of connections and transfers, which

are assumed to operate in parallel* The target of a transfer can

be made dependent on data and transfers can oe conditional. Each

statement is numbered and corresponds to a st~te, and the

branches refer to the statement numbers, AHPL Provides the APL

operators for branching and selection. TIhey Provide the normal

capabilities, but special characters are used tM represent them

rather than key words* Structural iteration is provided, includ-

ing bookkeeping variables. It is Possible to soecify that a Pro-

cess wait or not wait for the completiomn f an initiated opera-

tion. Control and data are separately identified anti selection

is Provided to allow control decsionu to deoema on late.
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DIVERGE and CONVERGE, which are similar to fork and joint

allow for the description of parallel processes. In addition,

ONE SHOTs, syn, and delays can ell be used to describe timing.

Generality, Readability and Writability

CDL's main assumption about a device is that it has only one

clock, Descriptions in CDL are confined to a primitive register

transfer level. CDL can be extended through new operators.

Though comments are suoported, CDL's lack of modularization

tools orea'tly restricts readability and writability. Since a

oescription is strictly linear, it cannot follow the structure of

the described machine. Also, because the of the global scope of

any identifier, larce descriptions are going to start having

problems with name conflictse especially if more than one person

is working on the same descriotion. It also becomes difficult

for a human to spot Cooperating parts of the machine and shared

facilities. The language is simple* however, and uses familiar

notations for standard concepts.

VDL

DUL makes no substansive assumptions ahout devices being

descrioed, Descriutiona can be at the relster transfer level or

switching circuit level. The language is extensible through new
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operators and predefined elements (undescribed components),

nDL has been used for design, documentation, simulation ano

logic design automation* It has been used to describe a variety

of machines designed for classroom exercises and research,

The language is rather simple, using many familiar con

structs. However? the procedural selection notations are non-

standard and not suqgstive. The limited depth of midularlzation

could hamper fidelity and readability* Clusters of closely coo-

perating automatons are hard to represent and may be hard for the

reader to spot. Also, modules that are subcomponents of other

modules may be very hard or impossible to represent, again limit-

ing fidelitY,

MOP

MOP assumes a device has memories emoooving the machine

state, instructions to change the state, a main memory to hold

the instructions, and an instruction interpretation cycle with a

program counter. It is thus limited to describina machines which

perform one high level operation at a time in reponse to storeo

data. Thouch parallel operations may be used to imolement an in-

struction, they cannot he described with MUP. mOP can be extend-

ed through introduction of new constructs to describe the actions

of the instructions. MOP is limited to ISP level aescriptions.

It has been used to describe the PVPS and PPI1I/PO for code aen-

eator derivation purposes.

One interestinq asect of MOP is that ! "OP descrirtion of a

computer may be derived, with little human inout, from a descrip-
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tion written in ISP, which is helpful in lioht to the impediments

to wide applicability of MOP. This method has been used to qenm

orate a MOP description of the PDP|I/70.

Cessandre

Cassandre assumes that a computer consists a collection of

potentially nested autowatar each of whose operation is con-

trolled by discrete states with state transitions occuring at

clock signals. Actions for a given state are performed in a sin-

gle clock period. nescriptions are confined to the register

transfer level end exttnsibility is hard to assess from available

descriptions (the main language definition is a Ph.D.

dissertation written in French). Cassandre has been used to des-

crib* a 16-bit ALGOL machine and a system having two linked INTEL

8080's. Automated applications are envisioned which will reduce

Cessondre descriptions to lower level descriptions# estimate the

cost of units* analyze descriptionso support description modifi-

cation, do reliability analysis, design circuit test procedures,

produce grenhical representations of a system, and aid the design

of micropPogrammed machines.

ERES

ERES as currently defined assumes synchronous systems that 4

are composed of synchronous sequential networks and combinatorial

networks. A proposed extension EGJK) provides mechanisms for co-

operation between asynchronous Parts of a system, The language
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can be used on the register transfer level or the switching cir-

cuit level, and in extensible through introduction of me4 opera-

tors. Information is not available on what spolications have

been develoned usinq FRFS nor on the machines that have been des-

Crihed in ERES.

The language is syntactically simple Pnd uses familar con-

structs. The modularization tools seem rather weak, oarticularly

if one wishes to descrihe a hierarchy. This will hurt both the

clarity of descriptions aro their fidelity.

AHPL

AHPL can describe recister transfer and switchino circuit

level operations, and Provides a completely general cParellelism

construct. However# the weakness of the modularization con-

structs will ouickly become more and more of a oroulem as the

size of a description grows. This combined with its Provision of

high-level operatorse makes the languaqe mainly tjsueful for teha-

vioral system specifications. The language is simple, but uses

special characters which may not be suggestive or familiar to

users. Also, because of the nroblems with mnoularization cited

etove, AMPL descriptions will have a hard time retaininq fidelity

if they go below the level of a specification.
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Summary

These mon-Proceodural lanquaqes are rather similar to each

other, except for the rather distinctive characteristics of MOP*

Most of the languages were developed for design# and oriented to-

ward describing the behavior of a system at any level of detail*

using RT level orimitives. Vectors and matrices of bits are gen-

erally supported with vectors of bits being used to hold in-

tegers, Except for MOP, ro lanouage provides format description

tools, Renaminq and Some restricted form of indexing are usually

provided to facilitate accessing parts of composite structures.

Most languages Provide for arbitrarily complex exoressions with

addition, subtraction, hoclean, relational, concatenation, and

cooplementetion operations available for use within expressions*

Registers and terminals are generally supoorted, along with

transfer, connection one renaming assignments. Modularizetion

tools are usually limited, with combinatorial networks being pro-

vided for structural meaularization end short action seaences

being definable for procedural modularizatione Control con-

structs are limitedr but each provides some facility for alterna-

tion. Most languages support clocks as a tool for describing a

system's behavior with respect to times The lanpuages are gener-

ally restricted to the RT level or PT and switching circuit lev-

els of description. The languaoes are usually simple and usually

provide familiar facilities, weak modulerization tools, and are

limited in how closely a description can follow the structure of

an implementation.
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CDL is distinguished bw its generally low level, as seen in

its reQuirement for siwple expressions, and is mainly quitable

for an implementation level description. DL, Cassandra, ano

4HPL are the only lanQuages to support structural iteration and

bookkeeoing variables. DDL and AHPL are the only lanouages to

provide for use of undefineo components an4 thay are also unique

in supporting del4ys, VOI)L and Cassanre are the only lanauaqgp

to supoOrt state encodinos, They also Provide the more Powerful

modularization tools. Consistent with its focus on the specifi-

cation level# AHPL orovides a rich array of high level operator

and a wide veriety of cArriers, incluoing some that are rather

useful for synchronization with other systems. It is unfortunate

that it uses such unfamiliar synactic forms for its construe-ts.

MOP's concern with code aeneration anplication appears in -any

4sysp including its high level; lack of constraints on 'ata

types, accessing modes end operators; lack of terminals; its

form of modularization; and the insistence on time and space re-

Quirements for instructiors.
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Exclusions

This comparison was made as a part of a oroject investiqat-

ing compiler retargeting# and therefore mainly examined those

lanquages that would be useful in a retarqetable compiler system.

Flowware was therfore excluded from the study since it is baseo

on graphic inout and the retargetable would require textual

input. LOGAL# evidently very useful at Univac for aesign, was

too low level and lacked the extention capability necessary to

provide information needed for compilation.
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Interesting but Incomplete Languages

This soction discusses two languages which are intended for

wide utility and ease of use. The languaces ConLen ano RTS ITI

are not yet complete and therefore cannot yet be exhaustively

compared to the other lenguages in the study.

ConLan
eMee0.

Conlin is being developed by the Conference on Computer

Hardware Description Languages and is intended to be suitele for

all CMDL applications (Pi177]. The group has been working on

this rather ambitious task since September, 1973, Its latest re-

port was distributed in June of 197P. To try to be useful for

all applications, Conlon must be sole to describe systems on sev-

eral levels of description and at various levels of detail.

This breadth of levels is beino attempted through definition

of a primitive, low level language, Primitive Set ConLant for

which some very powerful composition ano type definition con-

structs are defined. These composition and definition tools are

then to be used to define more powerful and useful languages.

One goal is to standardize the definitions of these more powerful

languages in addition to their being defined in terms of the same

primitive language.

The ConLan working group has also Proposed a two-tiered de-

finition of time with *virtual* time steps within a *real" time

steo, This will hopefully be sufficient for the needs of any an-

plication.
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The above concepts are pPesently Only pPoposals Of the

Conference Working Group and have not been adopted by the Confer-

ence an CHDL's as a whole. M~uch work still remains in comPleti'ng

the primitive base and the specifying the various application

lanauagts based on it.

RTS III
SOM 'sm" *

RTS III is being developed by Robert Piloty and his cowork-

ers in Darmstadt (P11751. They are focusing on the need for var-

ious modularization tools in a CDL that is to be used in a wide

variety of applications and in all stages of design and impleme

tation of a system. Current proposals identify externally Com-

trolled modules, automatons, open seguences ano combinatoriel

networks, Th. different cosiqnstions allow some checking of the

body of a module to be sure it has certain formal properties@

[he constructs are nuite general and modules con be nested to any

depth, A powerful macro-like facility is defined to facilitate

the use of similar components in different Parts of a system.

In addition to the segmentation constructsr the basic state-

ment sytex and semantics have bean oefined. 7he language is be-

sicly non-procedural, with event conditions controlling groups of

actions. There is also am allowance for procedural descriptions.

R egisters and terminals are supported and con be declared as

input, outnutr or local. In addition. structural iteration end

bookkeeping variables are supported.
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Conclusiorsp Remarks

The number and variety of CHDL's ProPOseo and in use is

staggering ann this study could net hope to be exhaustive. There

are at least as many languaqes and descriptive systems worthy of

close study as have been presented here. This study hasp

however# identified some truly useful lanquages and some Serious

flows in others. Language characteristics that are imoortant to

specific aprlications have been discussed, For instanCe, MOP is

well suited for driving codse eneration. TSP is by far the most

general and flexible language presented, recommending it for a

broad range of aPplications, and SMITE is easy to use end well

suited for describing behavior for emulation.

In adoition to observetions about Individuel lennuages, the

study has developed and refined i scheme for Oescribino and co-

poring langueoes that will be useful for neneral use. This would

be useful in compiling descriotiOnS of a large number of

languages for reference. A system of description can also help

one see a language more clearlye aiding lanquage desion and se-

lection.
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Summary of Lanquageg ano Characteristics

The followino tables summarize the characteristiCs of the

orocedural and non-proCedurel languages separately# with the fol-

lowinq remarks applying to both tables. No language allows re-

Mundant descriptions unless it is soecificly mentioned. all

lanauageS that provide shift operator* provide 
for shifts of var-

yno size and in both directions, Any'of tnese languages can he

extended by the gddition of ne data operatorst so this is not

mentioned under "qenerality", In ell cases the reader should

rely on the main text for mope detail and precisiont these tables

are meant as a short overview. The following table defines some

of the terms and abrevistionS used in the summary table,

A-44



TERM/ABBREVIATION DEFINITION

alternation a construct analogoujs to 1F.*THEN**ELSko*

comb, noe comtinatorial network

concate concatenation

controlled scooes ability to control whicb modules may access

a variable

dece. decrement operator

inc. increment operator

modulaor, noiul1 r1 3at iom

RT register transfer level of description

solection a construct snalogous to CASE

spae level specification level of detail

ltd. arftho standard arithmetic operatora,

at least +P o'r *,*r an

std, hood, standard boolen operatorst

at least ANOp OR, and NOT

*td. roe standard relational ooeratorst at least

x, <# >, and their inverses

swit, Ciro switching circuit level of description
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Appendix B:

A Comparative Study of Intermediate

Languages



An Intermediate Language (IL) represents a program while it is being

processed by a compiler, and allows communication of information about the

program between phases of the compiler. Whether a compiler consists of one

or of several physical passes, it can be thought of as a collection of several

logical phases. The first phase (ordinarily lexical analysis) inputs a

source program and outputs some intermediate language program. Other phases

will accept an IL program and output another, possibly in a different IL.

Eventually some phase accepts an IL and outputs the target language. The

form of these ILs, and the information carried along with them (symbol tables,

data flow information, etc.) depend on the functions of the phases that they

link. In designing a compiler, it is often convenient to use several ILs,

and to let their operators and storage mechanisms reflect the source language,

or the target language, or both. ILs may be dependent on the language struc-

ture, or on the host machine or both. These dependencies make it difficult

to retarget or adapt the compiler.

The use of a single, universal intermediate language has been proposed

to reduce compiler implementation effort by providing a standard interface

between the language dependent and machine dependent parts of a compiler

ECo174]. The three major advantages of a compiler built this way are: the

compiler can be adapted to another language by changing only the language

dependent phases, it can be retargeted by rewriting the machine-dependent

phases, and a considerable part of the compiler (some optimizations, symbol

table routines, etc.) will be relatively constant. The major requirements

on a universal IL are that it should be independent of both the source lan-

guage and the target machine, and that it be flexible enough to represent all

the information that has to be communicated between phases of the compiler.

IL Requirements

The first major requirement mentioned in the previous section is that a

universal IL be source language and target machine independent. One result

of this requirement is that the "level", or complexity of the operators and

storage descriptions, of the language be well placed between the source
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languages and target languages that we are considering. Two observations

motivate this requirement. The first is that if the mismatch between the IL

and either the source or target languages is too great, the corresponding

translation will be difficult, and the second is that if the IL is too close

to either language, it will be dependent on it to some extent. It is diffi-

cult, if not impossible, to define a fixed, universal, intermediate language

HW781. Take for example, an implementation of FORTRAN on the PDP 11/780

VAX machine. The high level DO construct should remain a DO in the IL, since

1) knowledge of high level control constructs aid global optimization and, 2)

the VAX has a single instruction which implements almost the Vntire coitrol of a

DO loop. However, handling such a peculiar control construct (from a modern

language viewpoint) makes the IL rather language dependent. Most ILs would

have it reduced to separate loop and test elements, which, of course, are

both hard on the global optimization and make the use of the DO instruction

on the VAX very hard tc implement. For these reasons, a universal IL must be

extendible. Extendibility will partially negate some benefits of having a

single fixed IL, but it will make the universal IL idea workable.

Another requirement for an intermediate language is that it be ible to

represent all the information that has to be passed between the compiler

phases that it links. A single IL is desirable so that only a single support

system to read, write, and/or analyze it will be needed, and because a single,

convenient IL can provide a conceptual framework for the compiler. Therefore,

a universal IL should be able to represent not only the semantics of the lan-

guage, but also the information required for register allocation, code gen-

eration and optimization. It is also desirable that the language be suited

to the transformations required for optimization.

The level of an IL results from the selection of its operators and con-

trol constructs, and from its storage mechanisms. Since there is more common-

ality among the source languages we are considering than among the target

machines, a fairly high level representation for operators and control con-

structs is needed. Also, the retention of looping and conditional constructs
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in the source language allows the compiler to retain information useful for

optimization. As for storage mechanisms, it is important to avoid the use

of specific accumulator registers or stack operations that are not machine

independent.
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Languages Considered

The intermediate languages considered in this report, with a brief de-

scription of each follow.

The JOCIT IL I Dun751

The JOCIT IL was developed for compilers translating JOVIAL/J3 for a

number of machines. The language is high level and fairly language dependent.

It is a post-fix - polish language. Looping operators are included, and

symbols and their attributes are kept in a symbol table.

OCODE IRic7l]

OCODE is the IL for Richards' BCPL compiler. It is language dependent,

has been used to retarget the compiler to from 1020 machines (as of 1974) and

is not well suited for stack machines.

HALMAT [11741

HALMAT is the IL for the Intermetrics HAL/S compilers. It is high-level

and language dependent. It uses explicit temporaries for intermediate re-

sults, and is machine independent.

JANUS [Co174, HW78, IM78, CPW741

JANUS was designed as a universal IL. It provides a large set of opera-

tors and a flexible storage scheme, and it is extendible. Its control and

data structures are at a fairly low level, and it uses a stack for intermedi-

ate results. It is designed so that it can be translated to assembly code by

a macro processor, and some difficulty in handling temporary variables and

its lack of high level control constructs can be attributed to this.
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TCOLada [Cat78, SLN791

TCOL was designed by R. G. C. Cattell as a universal IL. The version

presented in his thesis is sketchy, and TCOLAda is an elaboration on it de-

veloped by the PQCC project at Carnegie-Mellon University. TCOL programs are

trees, with fairly high level data structuring and control flow operators.

PQCC's approach to universality is to introduce language or machine dependent

operators and data structures as needed (TCOLAda is the version tailored to

Ada) and to let the compiler-compiler produce a compiler tailored to that

version of TCOL.

IL Comparison

The table in this section gives the ILs mentioned above, and how well

each meets the requirements that have been defined. The text in this section

will elaborate on the entries in the table.

1. Source and Machine Independence

Since OCODE, HALMAT and the JOCIT IL were each designed with a

particular language in mind, they tend to contain assumptions about the source

languages operators, data types, parameter passing conventions, etc. and so

their language independence is low. JANUS was designed for language inde-

pendence, and its use in Pascal, Algol 68 and BCPL compilers confirm that this

goal was well met [HW791. TCOL was also designed to be language independent,

and TCOLAda was designed as an IL for Ada. Much of the development of

TCOLAda was in the specification of data types, data structuring facilities,

control structures, etc. Since Ada has a rich set of these features, and

since TCOLAda is at a much lower level than Ada, TCOLAda is fairly language

independent. The structure of the IL and its external representation and

symbol handling are language independent.

The machine independence of all these languages is good, and all of

them except TCOL have been used in compilers for more than one machine.
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2. Level

The three language-dependent ILs are at a fairly high level, with

looping, alternative and procedure call constructs. JANUS has a mix of high

and low level features. Its control constructs are conditional jumps, its

data structuring mechanisms are less complex than those of TCOL but more com-

plex than those of most ILs, and its procedure call and parameter passing

mechanisms are very flexible. TCOL is the highest-level of the ILs con-

sidered. Its control constructs, data types, data structuring methods, and

operations have more flavor of Ada than of a machine language.

Jocit IL OCODE Janus TCOLAda  HALMAT

Source Independence Poor Poor Good Fair Poor

Machine Independence Good Good Good Good Good

Level High High Medium High High

Temporary Storage Implicit Stack Stack Tree Explicit
Stack Temps

Extendibility No No Yes Yes No

Suitability for Fair Fair Fair Good Fair
Code Generation

Practical Experience Yes Yes Yes No Yes

Figure B.1 IL Comparison Chart

3. Temporary Storage

HALMAT uses explicit temporaries while the Jocit IL is a post-fix

polish language and so uses an implicit stack. Janus and OCODE use explicit

stacks and TCOL is a tree language, with temporary storage implicit in the

tree structure.

4. Extendibility

With enough effort any language is extendible, however, Janus and

TCOL were designed with extendibility in mind, while the other ILs were not.
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5. Suitability for Code Generation

This is discussed in the IL selection in Section 3 of this

report.

6. Practical Experience

HALMAT and the Jocit IL have each been used in commercial compilers

for more than one computer. OCODE has been used to transport the BCPL com-

piler to a number of machines, and Janus has been used in several compilers

and an experimental number of machines. TCOL has not been used in a com-
Ada

piler to date, but will probably be used for one or more Ada compilers in

the near future.
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Appendix C:

A MOP Description Example



4 MP file for Mini-S (simplified PDP-8>4 Note: Comments are in
braces 4).

4I-flds)[

(OP 0 3 0 o)

(I.BIT 3 1 0 C)

(ADR 4 8 0 1)

(TM.BITS 4 8 0 O)

(UBITS 5 7 0 0)

(UCLASS 4 1 0 0) ]

4SBs)[

(PC 1 8 P)

(Mp 256 12 M)

(Acc 1 12 G)

(IO.REG 1 8 R)

(L 1 8 R) 1

*AMs+ [

%8: $1:#8

%Mp: (<> Mp $1:#8 0 12)

%@Mp: (<> Mp (<> Mp $1:8 0 12) 0 12)

%PC: (<> PC 1 0 8)

*%Acc: (<> Acc 1 0 12)

%L: (<>L 1 0 8)

%IO.REG?(<> IO.REG 1 0 8) 1

*63CS) E

Y: (

%8 ::(EMIT[5 0 01 $1 0)

%Mp :: (EMIT[5 1 0] $1 1) )

Z: (

%Mp :: (EMIT(5 1 0] $1 0) from R. G. G. Cattell[Cat78-

%@Mp :: (EMIT[5 2 01 $1 1) )
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%8 (EMIT[6 0 03 $1))

.I-FMTs+

*FMT 1* (OP Z) 41-opnd format)

(FMT 2+ (OP Y) 4jump format

*FMT 3+ O3P UGLASS UBITS)4m4-cro forrnat+

4FMT 4+ (OP 10) 4IOT fornmat

48C-FMTs4

4FMT 5+ (ADR I.BIT) 4Y and Z+

4FMT 6+ (IOP.BITS) 1 16

(%Acc (AND %Acc $1:Z))

(EMITIAND 1 1 11 0 $1)

('- %Acc (+ %Acc $1:Z))

(EMIT[TAD 1 1 1] 1 $1)

(; (- $1:Z (+ $1:Z 1)) (=> (EQL $1:Z -1) (~$PC (+ %PC 1)))

(EMITFISZ 1 1 11 2 $1)

( .$1:Z %Acc) (~- %Acc 0))

(EMITrDCA 1 1 11 3 $1)

(EMITFJNS 2 1 1]1 4 $ 1)

(+- %PC $L:Y) :

(EMIIJMP 2 1 11, 5 $1)
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(~%IO.REG 10)

(EMIT[IOT 4 1 1] 6 $1)

(~- %Ace (NOT %Acc)) :

(EMIT[ com 3 1 1 1 7 040)

('- %Acc 0) :

(EMIT[CLRA 3 1 1] 7 020)

(*- %Acc (+ %Acc MI:)

(EKIVfINCA 3 1 11 7 0 10)

(- %0Ace (- %Acc M1))

(EMIT[DECA 3 1 11 7 0 4)

(%Acc 0t %Acc. M)

(EMIT SLA[ 3 1 1)1 7 0 1)

(MOe)

(EMITFN&P 3 1 11 7 0 0)

(-%Acc 1)

(EMIT(SETIA 3 1 11 7 0 30)

(~%Ace 2)

(EMITISET2A 3 1 1! 7 031)

(4 %PC %L)

(F24ITIRTS 3 1 11 7 1 40)

(- %PC %Acc) :

(EMITIJMPA 3 1 11 7 1 20)
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(~(LSS %Ace 0 ) GPC (-4 %PC )

(EMITSKPL 3 1 1! 7 1 4)

(>(EQL %Acc 0) (*- %PC (+ %PC 1)))

(E2,411SKPE 3 1 11 7 1 5)

(>(NEQ %Ace 0) (-%PC (+ %APC 1)))

(DM1TI SKPNE 3 1 1] 7 1 2)

(~(GTR %Acc 0) (--%PC (+ %PC 1)))

(DIIIT[SKPG 3 1 11 7 1 1)

(>(LEQ %.Acc 0) (-%PC (+ %PC 1)))

(EMIT[SKPLE 3 1 11 7 1 6)

(> (EQ %Acc 0) ('- %PC (+ %PC 1)))

(EMIT[SKPGE 3 1 1] 7 1 3)
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